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CHAPTER 1

INIRODUCTION

This contract was concerned with the application of recently
developed function-space Davidon-type techniques to the shuttle ascent
trajectory optimization problem, and with an investigation of the
recently develi ped PRAXIS algorithm for parameter optimization.

The PRAXIS algorithm has been programmed into the NASA-JSC
PEACE parameter optimization program, while the function-space
algorithms are contained in a separate single program.

A. the outset of this analysis the major deficiency of the function-
space algorithms was their potential storage problems. Since most
previous analyses of the methods were with relatively low-dimension
problems, no storage pfoblems were encountered. However, in
shuttle trajectory optimization, storage is a problem and this problem
was handled »ffectively. This point will be discussed further in Chapter 4.

In Chapter 2 the function-space algorithme are presented and
discussed. The theory is presented in such a way that both parameter
and function controls are handled naturally. Aerospace problems
usually contain both types of controls.

n Chapter 3 the shuttle ascent model is presented along with the
development of the particular optimization equations. In Chapter 4

the operatioa of the algorithm and typical simulations are presented.



In Chapter 5 varia ‘le final-*ime problem considerations are
studied since some inves*igators have found the functio:. -space
accelerated-gradient methods to behave poorly on variable final-time

problems. Simulations and heuristic reasoning indicate that the initial

(0)

£ is critical, and that

choice of 'f (in *the iteration scheme), say ¢
a cheice tf(o)< t: (optimal tf) appears *o improve the convergence
rate considerably.

In Chapter 6 a modification of Powell' s algorithm ZO' developed
by B'rentzs, is presented ind discussed. The algorithm is known as
PRAXIS, and it is a parameter optimization scheme which does not
require gradient information. A flow diagram of the algorithm is
presented in Appendix D, and a listing is available with the NASA-IS7T

PEACE program. Finally, Chapter 7 presert s the conclusions and

recommendations for further study.



CHAPTER 2
THE ALGORITHMS

In the past few years numerous quasi-Newton type algorithms for
the solution of parameter optimization problems have bec:a extended from
Euclidean spaces to infinite dimensional rcal Hilbert spaces. Just as in
Euclidean space, the primary advantage in Hilbert space is the accelerated
rate of convergence due to the building of second order information while
ru.;uir‘ng only function and gradient evaluations. Except for the conjugate
giadient and gradient methods, existing function space methods cannot
handle directly control variable inequality constraints. Thus arzlications
to optimal control problems have primarily dealt with the classical Bolza
problem. Since most realistic problems cortain control variable inequality
constraints it is desirable to be able to handle them directly in a computation
scheme. In attempting to solve such problems a new function space
algorithin has been generated and two existing quasi-Newton type algorithms
have been modified to allow them to handie directly the bounded control
problem. The madification of the algorithms was strorgiv influenced by the
work ({ Pagurek and W’oods:ide1 on extending the conjugate gradient method to
faclude bounded controls. The methods modified include Davidonz and

Broyden3 type algorithms.



2.1 The Algorithms

In this section the various algorithms will be formally stated for
the problem of minimizing a real functioml J(u), where u may be either finite-
or infinite-dimensional. With u finite-dimensional, the formulas are
applicaule to the standard unconstrained parameter optimization problem.
In the next section, ‘he appropriate modifications for application to optimal
cantrol problems with bouzndecd control variables will be presented.

In the listing below, each algorithm requires the specification of
a starting vector, a . In addition, the Davidon and Broyden
algorithms require the specification of a positive-definite, self-adjoint
linezr operator, Ho. Also, <a,b>and a><b will be used to denote the i1nner
and outer (dyadic) products, respectively, on the given Hilbert space.

Note that if the space is n-dimensional Euclidean space, then <a,b>= aTb

T

and a><b =a b’ , where a, b are n-dimensional vectors. The inner and

outer products for the optimal control problem will be defined iz the next
section.

Let g(u) denote the gradient of J, and define the update formula by

Ser T %t N9 .1

where cli 2 search lirection vector and a = scalar parameter defined

by a one-dimensional search technique which minimizes J with respect to a.



I. Gradient Algorithm (G)

a. Calculate the search direction diz -g(ui).

b. Use Eq. (2.1) to calculate u, and return to step a.

+1
5
. Conjugate Gradient slworithm 1 (CQ)

a. Calculate the search direction¥*

d;= -gtw;) + 8, 4., 2.2)

i-1 '<gi-1. &>

g (2.3)

b. Use Eq. (2.1) to calculate ui
7

11 and return to step a.

II. Davidon Algorithm (DA V)’

a. Calculate the search direction

di= -Hi g ui) (2.4)
b. Use Eq. (2.1) to calculate v
c. Calculate

%" i % (2.5)
y, =8y, ) - gw) (2.6)
d. Update H according to the following formula;
8.><8, Hy.><Hy,.
H .<H $—1 ) i’i Ji
i+l i <s, y> <yi, Hiyi> (2.7)

e. Returrn to step a.

* On the first iterate (i = 0), define di = -g(ui).



. 3
1V. Broyden Algorithm {BRD)

The same as DAV except for step d, where H is updated according

to the formula r
<y Hyp> 57 % s, ><H.v, FYi><s (2.8

Hi*l-l=Hi+ 1+<s > A > <s > <8 >
IR A <8 Y i' ¥i it Vi



el Juxtrmarom To tntitral conteol Frrolhilemng

As goted nrevi~usly, in n-dimensional space the algorithms are
nsed to rinmrize a scalar valued function J (u), where u is an n disnensional
vector, the inner productis <s. y> 3 sTy, the dyadic operator is
8 ><y= syT, and the H operator is an n x n matrix cf scalars.
Implementation of the algorithms cn this type of problem is well documen‘ed
in the litarature. All of the algorithms described, with the exception of th~
(BRD) algorithm, have als. “een ge¢ cralized to optimal control problems
where g is the gradient of a functional. The primary difficulty in impleraentin.-
the qﬁasi-Newl;m type algorithms on optimal coatrol problems lies ir

renresenting the .ufinite-dimensional H-operater. ¢

£
- T
In L., =nace the inner product is < s, y> :( s~ v dt and the

8,9 tn
*?. However, there simply is

dyadic operator is (s><y)u _:_ <y, u>s
nn conwenient way to represent H. One way te overcome this diffi~ulty is
presented in Reference 4 by Lasdon, where it iz nrhserved that only Higl
‘rot Hi itself) is needed to compute di' This is also true for the Broyden
aicerithm. To implement the Brovden algorit™m, where g is the gradient
~I7ha fun vlonal, and u, s, and y are time functiox.ls, we proceed as fcllev s
UOH is taken to be any positive -defir.ite, self-adici-* operator.
1}) Frmp-ose Hi in Fq. (2.%Vasa stmbi ke H . Chera’~ on the
ra=-ltanl expression ‘or I{{ with o ¢ olepis B Teilevdeg (cmch

v A, .
RORSERC M O



i-1 <y.,» Hy. > <s,, g.> <H.y., g.>
d=-ng-zi, 14+ —121d 5 R i e S
i o°i j= <%.yj> <s8,y.> j <s,vy> j
<a,_, g.>
3 1
RV (2.9)

Eguation ( 2.9 ) requires the cornputation of inner products of the
5 functions Hiyi, 8. and Y;e and operating with Ho (Ho = I being the simplest
':}:Qoice). The functions (so, een B l) are available from past iterations.
To compﬁte the funcﬁons;{-liyi. we need only replace -8; by Y; in E;.(z, 9),

i e., I-Ii operating on A instead of -8;- Then, for the case i-1:

. -
. i-2 <y., H.y.> <8,y .>
- i j_"i-1
SR/ B W _]z:)O (l t <. V> ) <l v 5
<Hy.,y ,> <s ,v >
i i 4 5 R i1l g (2.10)
<8., y.> j <8, vy.> 3°) *
375 LI
Thus Hi-l ¥y, can be computed in a way reyuiring only inner products and

operation with Ho = I, as was the case for - 185 Note that 2i + 4 time

functions must be stored aiter the i iteration in order‘to compute the i+l iterate,

e (8 ,..., 8.) i+1 functions
o i
HYoe-- o0 By 3 v; ) i functions (2.1)
g;* ‘li +1° Yi1 3 functions



9.

We shall now define tixe basic optimal control problem, and then discuss
the problems of impiementing the quasi-Newton algorithms. The
interpretation of the above formulas and operations is mc;re motivating
in an optimal co. :rol setting.

The optimal control problem of interest is a Bolza problem with

control constraints as follows: t
£

Minimize:. j’(u) = ¢(xf) + f L (t,x,u) dt (2.12) ji

t
o

Subject to: x = f(t, x, y), x(to) =x_ (x = a-vec or) (2.13)

lui|_<_ci (i=1,...,m) {2.14)
to’ tf specified
Terminal conditions are included in the ¢(xf) - term and statevariable
inequclity Constraints are included in the L{t, x, -u) by the method of
penalty functions. |
A motivating way of viewing thequasi-Newton methods is as a
class of algorithms between the first-orderm and second-order 10, 1, 12, 13
optimal control gradient methods. The gozl of a quasi-Newton algorithm
is to build information about the second;i‘gariation operatox; without computing
it explicitly, i.e., b§sed upon gradiernt information only. Si‘;ce only
gradients and function evaluations are required for the qﬁa.oi-Newton

methods, we shall first outline the gradient method for optimal control

problems, and then discuss the modifications for a quasi -Newton method.



10

In all of the algoritims, ti.e following equations are required:

H= L3 ‘.T f(t, », u) (2.15)

y o oH - &

A= -y o My 2x, (2.16)
- 8H

g) = = 2.17)

The function H above is the Hamiltonian, which is not to be confused with
the operator Bi of tke algorithms, and g(u) = 3H/du is the function space
gradient. The usual implementation of the stadard gradient method is

shown in Figure 1, where

(t)
%41

T - H, ) (2.18)

Note that the subscripts indicate the iterate number for the respective

vectors; this allows less cumberscme writing of the quasi-Newton formulas.
The optimal control fr- the problem defined by Eqs. (2.14-16 ) will,

in general, consist of a sequence of interior ( lnil < c,) #a¢ bounded

( !ni! = ¢,) contrel component intervals. On each subarc the followins

cerditions mnat b~ satisfied:

AH
= T — .19
ui ci —_— 7a <0 {2.19)
1
-c.<u,<¢c, T = ?'—'i =0 {(2.200
i i i au,
Y c nodie.. S f_r‘!. > 0

N &n .- {(? ™\



i A L T - =
1o e e ——— 4 :

[ ]

L]

- —— e - av—— ————— A o . [ ]
l'_'""!‘ oy —ste ,i)’ g~ %)= Ii..‘(t‘--w}—-——-'

° :
' .
~ 5_....-- Calrulate 1= -g_(t)
| )
: 1-D search =— -
— L 3 = i
ul = no + ao d_
uL(t) = xl(t) _-——1
L]
iSet A (t)=¢_
[ ] l f “f
—|Compute r}(t), = F T—_"'
~ i
s i——--—-- Calculate dl = -gl(t)
]
7 1 - 1-D search =>a,

—u=m tad,

— _d- 1 : $ x (t) rs—— v
A 2 i
ESet \z‘tf) = ¢‘x

——[Compate rz(6), gp) = Hgt) _ }—— ‘

«=——~ Calculate 4, = -rgz(t)

=
---1 -are

1-D search = °,
u3 = n‘- + azdz

Figure 1. Flow of the Stardard Gradient Method
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We shall now discuss how bounded control variables are treated directly
in the standard gradient method since the same basic idea is employed in
the quasi-Newton methods.

~ As new controls are generated by varying @ in Eq. (2.18), they may
violate Inil < c.. On these intervals u is truncated such that if o >c,
v is set equal to < andiifnit =S W is set equal to -c.. After truncation
the cost associated with the given a is calzalated. In this way the saturation
region may change from iter>:c co iterate and costs are only computed for
realizeable controls.

The implementation of the guasi-Newton type algorithm on unbounded
control problems i+ shown in Figures 2 and 3. As in Figure 1 the subscripts
indicate the iterate number, and Eq. (2.7) implies the Davidon algorithm
and Eqs. (2.9) and (2.10) imply the Broyden algorithm.

Note that as the iteration proceeds, the number of functions stored
increases. The computation time per iteration will also increase because
of more inner product evaluations in the updating formulas for Hy and d.

TG overcame this difficulty the algorithm is restarted with a pure gradient
step when i =q, where q is some predetermined interger. Pierson and
Rajtt:x-a.14 demonstrated that the restart feature sometimes speeds
convergence in addition to being a practical necessity. For certain problems,
they found that for q small, say 3 or %, that the convergence rate was

enhanced.



i=0

— RETESTT T o
PR S i .
- tSet \ (€)= &
! o a xf
—{Compute A i\ o, #)¥= B 51 e
: Ty —— e e et o ——+ o
H
S Calenlata d’\ = .m0
]
3
I : 1-D search =3 a
] - ) - o
: v.“u tad
: o o o0
}---“—*--S*ores )= T, (*)~u {t) = €' d
:
',
H
-— TR ) ]
Totzl stocrage go. ul, So
—® = x® T
S WAERS
« TS
r———{Compute X {2}, r,(t) - 1) J S -
! ——
i
———— = - (14
- Store y {t) = g, (t) - g, *)
:
[} - T s oz Te- -y
r_...-- Calenlate and stere ﬂoyﬂ e - ¥a
! ¢
< -
- = L ; .- o -~ -
!—-—-— Galculate 4 g, & .‘{_‘ fE:. 2. or2.8]
1
' - 1-D searcn =-~¢,
i e B A
]
-+ )= c' - = Q
't- Store 5, f )= t) nI(t) 1%
!
I L —= Total! st -age g’ 1. Sqe yo, H.“.Yn
51
Figure 2. o~ of the Fuanction Siece: Quasi-“Tevwton Ligorithms for

HO—I'H:’.i~ 1



4 £
, 4
— nz(t) =2 xz(t) ; 1
i Set A, (t.) = ¢xf
;--- Compute \2(t), gp(t) = H 9Et)
====-= Store yj(t) = Sz(t) - Sl(t)
' 0
/ L---,Calcnhte and store Hyy, = Iy + 2 [Eq. 2.7T0r2.8]
| 0
) 1

’—MCalcnlatedz=-gz(t)-J§ [ BEg. 7 or 8 ]

- - 1-D search a
e— =

_n3 = u2+azdz

i=2

2

- Store sz(t) = n3(t) - u.z(t) = azdz

- -]:-..-—- ‘

— L———--- Total storage g,, u,, 8., 7). H y_

"1

82

— —f0 S =®

— C..npute A,(t), &,(t) = Hyt)

!
! =
p=-=-— Storey  (t)=g (t)-g ,(t)

Set kn(tf) = ’x

|

i=n

n-2
l-'----- Calculate and stere Hn-lyn-l = Iyn-l +J§, [Eq.2.70r 2.8 ]

-

n-1
—- “alculate d_= -g_(t) - JZQO [Eq. 2.7 0r2.8]

1-D ch a
- : ™ — m— i — i — P sear g

-0 =a +a d
nt+l n nn

.'- -"O"- - an on

«=-== Store sn(t) = un+l(t) - un(t) = andn

I
i

-—===. Total storage Byr Uopvr 8,0 Y g0 I:ono
®*n-1 Hn-lyn-l
s
n

Figure 3. Flow of the Function Space Quasi-Newton Algorithms for
Ho =Jandi=2,...,n,...
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2.3 Bounded Controls

To apply the quasi-Newton type algorithms to the bounded control
problem a modification to the updating formula is required. In the interior
portion of the comt;l we wish to build second order information while
Qecond ;':rder information on the bounded portion of thé control is of little
use. Thus, the quasi-Newton formulas should concentrate ua the interior
controls, and a standard gradiem‘ formula can be used on ‘he bounded
portion of the control.

As with the gradient algorithm, as new controls are gensrated
they are truncated before calculating the associated cost. A
saturation function w.(t) identical to Pagurek and Woodside's' is defined.
This saturation function is set equal to zero when the control is on the
boundary and is set equal to unity on the interior. The saturation function
is then used in the following way to compensate for our lack of freedom
in choosing the control on the boundary. Instead of using q, y, and Hy in
the formulas for calculating the search direction and updating Hy, we use
wg, wy, and wlly. We know that g = 0 on the interior portion of the
optimal control and this is whers we wish to build second order information.
On the region of saturation g ¥ 0 (in general) and the y's (or Ag's) should
not contribute to the inner products in the npdating formulas. It is not
necessary‘to apply the saturation function to 8 because on the saturation

region, s = Au will already be zero.
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The quasi -Newton algorithm for bounded control problems differs
i{rom the algorithm for unbounded control problems in the following ways,

i) As the 1-D search secks the best a the associated controls are trveacats -
before the associated cost is calc;xlated.

ii) A saturation function wi(t) is generated after each iteration.

1ii) wg, wy, and wHy are used in the updating formulas and in the

c=lculation of the search direction.
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2.4 Function and Parameter Controls

Some optimization problems are most naturally formulated
using a combination of control': m R"” and Lz spaces. The shuttle
-ascent problem developed in the foliowing chapter is such a problem.
While the approach for problems whose control space lies in either
R® or LG is well develcped, the theory is incomplete when a mixture
of controls exists. For the general Balxa problem Eq. 2.12-14, the
control is an. iri vector of functions,

-
r‘ u,(t)

1 ) - ., m

| = u L2 [ t. tfl
i

u' (t)
m

L -

and the first variation after appropriate adjoint function definitions is,

tf T )
§ J=_[ H_ 7 Sude (2.22)
(¢ ]

The gradient of J at the element :, denoted by E, is defined by the inner
L]
product rela‘ion,

53=%‘ JLae) +ent)] |, _, e=<gh>e =<g bu> (2.23)

t
£
m T
OnL, [t,t] <v, 2> =~{_ tov zdt (2.24)

Comparing Eqs. 2.22 and 2.23 we have,
g(t)=H, (2.25)
This is the usual function space gradient. It can be shown that

in L;n [ to' t£] the linear quadratic problem (L Q P),
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t

f
min J:lf [xTP(t)x+uTR(t)u] dt
2 to
SUBJECT TO x =G(t)« + B (t) u (2.26)
x (to) =x x s to’ 1:f given

in equivalent to the minimization of the unccastrained quadratic functianal,

1

J=3 <u, Au>+<u, w>+T (2.27)

where A, w, and .]’Q are appropriately defined and the inner product

is defined by Eq. 2.24. It czi also be shown that A is a strongly
positive operator if P (t) > 0 and R (t) > Oon [ t t£] . rhen, the quasi-
Newton methods can be applied directiy to the quadratic functional
given in Eq. 2.27 for which convergence can be shown. Therefore an
iterative solution to the optimal control problem of Eq. 2.26 can be
generated.

In general, the nonquadratic functional is of interest. However,
if the general Bolza problem can be approximated by a second-order
expansion in the neighborhood of the minimizing control reasonable
convergence may occur *near “ the minimum.

Accepting the desirability of the approach above, consider the
class of optimal control problems whose control space is composed

of elements in L;“ [ t,t]andR"

- .
ay ()
'
|
]
e i L x R (2.28)
“
1
]
cl
n
" )




The first variation becomes,
t ) t T
£
GJ’={’H“TGudt+j; fu, sca @.

o o
Since ¢, @ constant, then §c € dc and Eq. 2.27 becomes

t t
61:{fHuT6ndt+dcht£Hc dt (2.30°
o

o

Proceeding as in L;n [ to. ti] an inner product must be defined which
will imply the gradient. Then to justify, ir a sense, the application c?
the quasi-Newton algorithms to this class of problems a suitable
optimal control problem similar to the L O P must be developed which
can be recCuced to an equivalent unconstrained quﬁratic functional.
The merit of the chosen inner product is measured by its usefulness
in implementing the quasi-Newton methods.

A more straightforward approach to this class of problems is
based on the observation that bounded eiements in R can be chought

of as constant functions in LG [ t tf] . Thus the control can be

partiticned,

—— -~

g
)
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where \li(l -1, .. .,p) ¢ LZ[ to,tf] andui(z =p+1, . ., m)
are finite constant functions. Thus the admissible control space is a

m
subspace S of Lz [ to' |:f 1.,

S = ;Iui(i'-'l...,p)eLz[to,tflg(i=p+l,...,m)
finite constant functions (2. 32)

The goal is to find a u e S which minimizes the quadratic
functional of Eq. 2.27. The advantage of this approach is that all the
theory which has been developed for L;n [ t,t ] still applies. The
only change is that u is restricted to lie in S.

The set S is a linear subspace of L;n [ t. t ] . The ausefulness
of the fact that S is a linear sabspace of Lzm [ t ot ] lies in the
following property of Hilbert spaces and quasi-Newton algorithir s,

Property : Let M be a linear subspace of a Hilbert space D.

There exists a mapping P:D <« M called a
projection operator which is linear, selfadjoint,
and indempotent. If Ho of the quasi-Newton
algorithm=s is chosen to be P and ;o € M, then
:i € m for all i, and

lin || Hpg, |l 2 o,
koo

that is, the projecticn nf the gradient ontoM tends
tn 7zrnv~ which is *he cendition for convergence.

I‘-"F"‘- Q,\f,ur. ha Yok a) 2.
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If a projectior. operator P = Lzm E:; ,tf]-—) S can be found, a
congistant method for handlingcombinations of function and constant

type controls will result,

Property: Let A = f t _ | where Ae Lzm[to,tf]
A (t)
P m-p
and At) € L, [to,tf]  A_(t) e Lz [to_tf] .
Define ®: L. [t ,t ]=»5 by
I o' f
o race [ am ]
PA=Pl----- =] cce-a
Ad)d T 4 8 (at] . at=t.-t
at ) c f o
*o (2. 33)
3 -

Then, P is linear, self-adjoint, and idempotent.

Pre~i: i) Linearity - P [a A+p Bl = P gff.t?.if.
eA +p B
F L Af +p Bf

1
e l; (eA_+BB )dt

o

= aPKi-p PB

-— — & = -
ii) Seli-Adjoint - Define p" by<A, PB><P A,B>

I t B
<A, PB>= [ A PBat= | [AfAC]P f [at
to to B
C
- -
t B
=f[fA A ] L at
f ¢ t
to 1 fB dt
At Jt ¢
- -




- : . . i f 3
. .Af Ef = Ah l:\—; tf !3(_ 1t} ds

¢
3} [e)
ST
= {'A. B a +(--fA dt”f B_ dt)
to 0
£ t 'rrB]
£ 1 £ £
- — ’“ 3
Iilay 5 [ acal (P
(4] o

<PK, §> é P*:P

iii) Idempotent (Pz = P)

A A
p|-f_|d.L “pm e -
A 1 f
i c AL f A ‘dt
t
- o -
[ A 1° A
2 |2 £ £
P |-~ =P}---=c-- il 4= Rt Sl it
A 1 f 1 fl f
— d ——— a—
[ e a [ a e [ [ age ar
o L o o
i Af ] A 2
= jemm - t- ---------- = P ""f- # P = P
L £ A dt c
At "t c
o ]
The properties developed above imply how the first variation of
Eaq. (2. 30) should be treated in tte quasi-Newton algorithms. First,
.. m+n
viewing (ul(t), um(t), cl' . cn) as an element cf L2 to’tf' the

ecradient is

R , (2. 34)
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and an admissible choice for HO, say Eﬂ, is the projection operater (2.33),

which implies that the initial search direction is

H (0)
H. & = ... v
¢’ %o 1 te (0) (2.25)
)
v f H_ <t
f o tn
1 ]

However, n« “e that this is equivalent to assuminz
eq 2

d 2.36
f ot ( )
“with LT <R°, and H_ - I si
wit (ul(t), .,u o (t), cl, , cn) ¢ » | o’ tf‘:\ , an Hc I since
]
Hu(m e
FoBo 118 0y | T Ho B (2.37) -
'.
1t Yo [ H_ dt
L o J

Furthermicre, the choice of definition for the gradient (2 '36) has +he

aTne coavergnnce properties as the choice (2. 34) since

i~ 200y
[

5o he gradieat enpocssion in Chaner o



CHAPTER 3
SPACE SHUTTLE ASCENT MODEL AND OPTIMIZATION

3.1 Vehicle and Missica Description

The vehicle and mission considered are taken from Reference 15.
The goal is to determine a control history for the pressure-fed seﬁ;s
burn booster/040 c orbiter which will yield maximum payload deliverable
to a 50 x 100 nm. orbit inclined 28.5 degrees. The trajectory is constrair~d
to 650 psf maximum dynamic pressure and 3.0 g maximum accleration.
For trajectory purposes the mass of the vehicle can be broken down

intn five mair. subdivisions.

MASS DISTRIBUTION
BOOSTER ORBITER
—
?5 s, \3 P
m,, = fael first stage = 3.50680 x 106lbm.
m, = fuel second stage =1.16415 x 106 lbm.
m = structure first stage = 5.70850 x loslbm.
m ,= structure second stage = 2.61300 x 10s Ibm.

mp = payload = quanity to be maximized

The t-ajectory is determined by two controls, the mass flow rate
which implies the magnitude of the thrust and a thrust angle. The mass
flow rate may vary from zero to (aaximur» whic’ ‘wast between

0 and 100%. The overall trzjectory can be & . » four '"phases",
24
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Each of the phases is characterized by the way in which the thrust angle
is determined and by the coordinate system in which the equations of

motion are being integrated.

FIRST STAGE ECONDSTAGE
COORDINATE SYSTEM SPHERICAL Rou'rmcl POLAR
APPENDIX A
PHASE 1 PHASE 2 PHASE 3 PHASE 4
VERTICAL PITCH GRAVITY | LINEAR
RISE OVER TURN TANGENT

The equations of motion for the first stage are integrated in a
spherical coordinate system which rotates with the earth. This
coordinate system was chosen because of the ease of representing
initial conditions and aerodynamic forces. The general‘ equations of
motion are derived in Appendix A. Assuming the first stage engines are
perfectly expanded to vacuum pressure we have, »

Thrust = T =I""1 jia | “P o ® it
 where 18p1= 270.7 sec.

A .. =700 ﬁ:z
exit

0< |fa|< 3.01385 x 10 1bm/ sec.
= T = 8.15849 x 10 6 Ibf
The first stage burn is further divided into three phases. They are,
i) Phase 1l - vertical rise for ten secconds
ii) Phase 2 - pitch over at a constant rate for ten seconds

iii) Phase 3 - gravity turn i.e., the thrust is parallel to the velocity.

This phase terminates when all fuel is exhausted in the first stage.
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Aerodynamic forces are on the order of 2% of the total forces
acting on the vehicle after staging and drop off rapidly. Thus, aerodynamic
forces are neglected during the second stage burn. This allows the
equations of motion to be integrated in a polar coogdinate system.
- The equations of motion are stated in Section 3.4.  This cluv;nge
of coordinate systems results in a new set of state variables. The equations
relating the state variables before and afte: staging are derived in Appendix
C. By integrating the equations in a polar coordinate system we have
reduced the number of state viriables, simplified the terminal boundary
conditions, and simplified the adjoint equations. It is assumed that the
second stage engines are perfectly expanded to vacuum pressure, thus,
Thrust =T = Ispzhh"
where Iap =456.5 sec.
2
0< |m| < 3.0887 x 10° bm/sec.
= Tmax =1.40999 x 106 1bf.
During second stage burn tne thrust is orientated according to
the linear tangent steer%ng law, i.e.,
tan y = at + b, (a, b constants) {3.1)
where y is the angle between thrust vector and the local horixzontal.
The above discussion leads to the following overall problem:
i) Initial conditions - launch from KSC
ii) Terminal conditions - 50 x 100 nm orbit inclined 28.5 degrees

with insertion at perigee.

iii) Controls and Unknown Parameters
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1) itial GLOW - a parameter.
2) Mass flow rate @ (t) or, equivalently, thrust a function of time.
3) y during ptich over - a parameter.
3 4) ¢ daring ptich over - a parameter control for out-of-plane
thrust (explained in Section 3.2).
5) a and b - parameters used during linear tangent steering
tany=a t+b.
iv) Constraints
Q< 650psf

2) Acceleration < 3.0g's.
max —

3.2 Thrust Forces

: lIl:[ﬁ:lI.p-PmAe:
z

o

Figure 3.1 Coordinate System for First-Stage Computation
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i}  ferticzl Rise: T = IT§ 2 (10 seconds)
i1} Pitch Over: Considaer the %rial of vectors e eq e¢.

The nlane defined by ;9 and :é is the lcral horizon 11 plane.
The wait vector ¢ points in the easterly directicn for® #0 or =.

&

Aster vertical rise, the vehicle pitches over and at the same
time the plane of the orbit is determined by thrusting at some

constant azimuth angle ‘q. . (See Fig. 3.2)

[
.
]
[}
]
L]
]
t
"
13
L]
]
[
]
]
]
'
3
'
1]
]
J
[ ]
J
L]
[}
~1

Figure 3.2 Thrust angles. ~

’

The initial thrust is in the vertical direction, i.e., y = ‘;- . The vehicle
then pitches over with y = constant, which implies

Y5 - ¥ (et ) (e <t < 20)
whe -¢ tvr = time of pitch-over initiation. The angle § = Constant
throughout vertical rire, and it is noted that ¢ will not correspond to the
final inclination. However, the final inclination will be very strongly
influenced by 4 and, in fact, ¢ will be the primary control which affects

the final inclination angle. Thus,



T - !"fl Sin Y:r + Cos y Sin¥ ;0 + Cos y Cos & :‘]
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(3.2)

=r'-f' [Cos Y (t-t“_) e + Sin y (t-tv?) (Sinn!a en + Cos & '@)]

vy

iii) Gravity Turn: T || V = T= |T| =
v

—

T=- | =—¢ t— e, t— e
57 BN I B

iv) Linear Tangent: tany=at+b

. - —tan ¥
Sin y = 'Jl+tanzy

(-x/2 < y < w/2)

(3.3)

(3.4

(3.5)
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3.3 Aerou;mamic Forces

R is assumed that the vehicle is aligned with the local wind

velocity, thus

- 1 o2
Bl =3 ¢ I¥i" ac,,

Cp = Cp (altitude, mach number) vl =« v rwl

I:-—lz- pACD(n?+vz+wz) 2:' :t +'!:, :0 +!_— .e-‘
jvi v vi
= -l-pAC N 2 2 2 - - -
‘2 D u +v 4w uel_+vee *we. (3.8)

In all equations that follow the control notation will be,
u - mass flow rate magnitude
- GLOW (Gross Liftoff Weight)

€y pitch-over rate during pitch-cver phase



c, - a (linear tangent parameler)

3

c, - b (linear tangent parameter)

4

c.- out-of-plane thrust angle during pi‘ch over.

S

3. 4 Equations of Motion

® x =x

° x, =x4l(‘xl + Ro)

(u) £3=(x4z+x52 ) I(xl+Ro) -k/(xlnto)z +<xl+no)nz Sin’x-

}
+Zﬂx5 Smx2 + —x‘
6
xz x_X
. 5 34

+(xl+Ro) ﬂzSinx2 Cos x

(v) 2

‘f(,ﬁ\ao)m‘z (5 +7,)

FZ
+ZQx5 Cos xz + -x—'-
6 (3.9)

x3%g *4%s

5° —( xl+R°) ) (xl + Ro)tan xz

- Zﬂx4 Cos xz

(w) x

£

-2x.QSinx, +——
3 2 x6
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(mass) x.6 = -u

. . T 7/
%) Vertical Rise: Fl = IT' Qk xl.x3) CD(\,ﬁ'x.'S)

1 2
ns= ze(xl)Ax3

|T| = u.tsp -P (xl) A, (3.10)

- S - . = oy t-
§)  Pitch-Over: F, = |T| Cos Cz( tvr)

-0 (’1”‘3"‘4"‘5) CD\/’H"‘3”‘4"‘5> x3

F, = [T|sinC, ( :-:vr) Sin C,

-Q \/ "1"‘3"‘4"‘5) “p ( i Ut L xS) xg (-1

- Tlsinc /.
Fy=[Tlsinc, [t :w) Cos C,

y /
-Q{ "1"‘3"‘4"‘5) Cp ! "1"‘3”‘4"‘5) xg
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|T| =ul__ - PA
sp e

2

1 2 2
Q=-z- [ (ﬁ) A Jx:; ‘l—x4 +x5

x

2

_'3
iii) Gravity Turn: F, = I?Nx 2y xex
M1 37 T4 775

4 4
-of "1’*3"‘4”‘5) pi "1"3"‘4"‘5) *3

*a
F =|Thl 2 2. 2
2 "Lz' ~I-:x_4 +x5

-Q ("1"‘3’ "4"‘5) “p ( XXy Xy "5)"4(3'12’

X
F, = mvl—z——z—'—z
3 x3 +x4 +x5

-0 ( i Wit S "5) “p ( XpXypXe "5) X5




iv) Linear Tangent

3

)
=

3 4

-

It =el (3.13)
Equations of Motion
% -5
1 %
°
"N A2, ]
xz-x3l(xl+R )-k('i’lnk) + Fllx4

*4 (3.14)

3.5 The First Variation

In order to apply optimization theory the problem must be stated
in control notation or format. Therc are five parameter - type controls
and one function- type control. Recall the Parameter Controls:

i} Cl - GLOW

ii)C2 -y

iii)C3 -a

iv) C 4" b

v) CS- ¥

Function Control: u (mass flow rate magnitude). The equations of
motion for the system have already been derived (Appendix A) and

may be symbolized by

x = £ (t,x,0) (0< t<t)
2~
T =f(t,Xu) (t, <tsty)
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where, for convenience, u denotes the vector (Gl, oo s CS ,» 2). The
terminal boundary conditions will be handled by the method of quadeatic

penalty functions. The state variable iner uality constraints will be

handled by integral quadratic penalty functions. The performance index is,

. ~ 2
J(u)= - C1“’1( x (&) “xlf)

[ ~ 2
P % (tf)'fo)
‘ ~ 2
*Ps( x, () "3f)
tS
+P, f % a-650)" U iq-650) dt
to
ts 2
+ P, [®(acc-3.05) " U (acc-3.05)dt
to

t
+P, Il facc-3.00) 2 U (acc-3.00) at

t
s
2
+P7 ( Cosd’(ti) - Coscbf) (3.15)
Where & - inclination of orbit U(n) = 11>6
0n<o

q - dynamic pressure

ace - axial acceleratinn

Pi - penalty weighting factors

t, - defined by fuel exhaustion lst stage

tf - defined by fuel exhaustinn 2nd stage

1

" (4) e

(3) N

1) Vertical rise
(2) 2) Pitch over C2 =y< loluc.

- 3) Gravity Turn T ||V
4) Linear Tangent tan y = C3t + C4
Figure 3. Phasing of Shuttle Ascent Trajectory Optimization.
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The problem reduces to:

10- 26- t -
Min I(u)=6 (x,x.,3) + [ L (t,xu)de+ [ L, (¢, x, u) dt + £ L it, x, u) dt
o’ "8’ 7f - 1 ¥ 4 3
o 10+ 20+
tf N
LAt %) dt (3.16)
¢+
Subject to: x = f (t,x,u) (toﬁt < ts)
and =T, u) (t, <t<ty)
' — + .
to=0sec | 10sec ! 20sec | t frec ,; t - free | te free
1 ' ' ) ' '
- ﬁ d -y ” % 2 W N-N
X, -x; fixe : free ! free : X, ¥ free : 7{'(ts) g (xu:s))z xl X, free
x, free \ ! & =0\ '“; Ly =0
6 L bglxg) =0 g el
' % \ ' 7
i Mass of Fuel E Trans- ! Mass of fuel
i 1st stage i formation , 2nd stage
: depleted de- ; Equations | depleted defines
: fines ts : f‘&pp. C E te
Decfine

T
H=L + A\ f(oneachsubarc)

Thz first variation is
T T T
§J = + ¢ iz L oy
J ¢ dxo T ¢xsd}s * ¢§Vf dx

XC £

0-
+ [ [6x+H6u ) 763] at
0 b4 a

20- ~
+ [ [HY6x + Hi6u -\ 76%] d
10+ % “

T . .
+ [H (t2) -\ T(Ey) % (ts\]



. T -
A § "Tlﬁx +ESu 2T sx] de - _—
2ot 7 7 o . -
+ L a : S =
_ . 3 :
[Fep-2ea> el ay e
- ) - ;‘ ; ¢ Y ¢ 3 =
vl X7 fgw 0]y Lt
£- " - | ) e S B
- tﬂ‘i VP < A <
+ (B, &X+H - srlar - pancs
t~ - 7 ,A g ": - R N -+

Then, hﬂ:égra’ting -\T

8% by part-s - e T \
ty o T ' beoip
- T, . T T,y e s o fEITI o
-fta ATExdr =T (£) bx (k) -\ (cb)axuhu_{a A ex at

- and substitating into Fg. (3.17)

T T T .~
87=¢ ‘dx to Tdx +on  a%

. _ ) W L e
+A (o) £ x(0) -A7(10) 6 x 10) + [ [(H_ ry) “exi H 6u] at
0

T + + T_ .- _ .20 - T 1
+17(10) 6x (10) -\ (20) 6x(20)+ [ [ H +A) “6x+H  su} a
10

T .
+[H(t;) Y (c;) % (t;)] dt_ ,

S
T@d) sx 2d) - xT(csy ox(t)+ [ [Hx +3)Tex + H;f su) a
20

(3.18)
. ~T ~
- |5 (t1) NT(enR (tgi‘ at_

~ T
+ [H (t,) X (tf)?{(tf)] dt, t

f
d ~T
X (t ﬁf(t;) :\,\'T(tf) 5%ty + [ IE?I' R SRt Huau] dt
f
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At ts and t ¢ ncad to substitate in the relationship between the variation
ir x 2nd the diff~rtial in v
M - e 3 -A2

A ~Ax - vt (3.1

Af*er substitntion and reduction, the follaw-ing exnression is oht2ired

L Xs ;" R &
_:n;‘ - _\\ l”" _.“f'
i T £
£

10 )
~
-‘-q" e - 1
2 ! "!rv I R~ 2777, ..% Ry
Ak S <
D
s
- £ AL -\_T ~ =t
= Y W A2 Y an as
" g- - [} -
T~

Tha S nzertials dx  and A0 a=a =alntnd he *ha differential of 7h
. ]

-
N -
turmgfn=—rntinn - e ) -.—-j .'-‘.l_ el
=
~
~ S
dx
s
:
,-
~—
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T ~T _
[ ¢xs-x(t;)] dx_ 41 (:ga&;-o

T T, 9 )
[q.‘s- \ (t;)] d_ +1 (tg)a‘x—lx - dx_ =0
S

T .T, . ~T =
[¢¥s - (‘g' +A A(t;) %—L_ ] dx;= 0 3.21)
)

Then, since dxs is arbitrary

=% 7 4
A (E2) = N (td) o lt‘. +¢xs {3.22)
Finally,
53 )+ N ~ dm
= ["x“ FAo(E) - A To) X, (8F) - N (t) °
0- 20- t- t
+ Hursudn [ ufsuats+ [ sHuTSndhrf fﬁ‘: 6u dt
[ 10+ ° 20+ t
(3.23)

After defining the vaiious adjoint differential equations and boundary

conditions by:

A= LS on (to, 10), (10, 20), (20, ts)

ax
<~ oH
A =-—on (ts,tf)
9x
ey s - i=1 3 3 24
Xi..f) .‘iif 1= ,Z,J ( . )

~ ~
H (tf) =0 == equation for X4(t f)

., = A (t}) (i=L....,5)

£ =% () 2B
M) = () = 'ts- t e

e
H (tg) =H (t;) = L9 (tg)
Assuming -xpansion about a nonoptinnal initial control estimate, the

quantities §u and vlm0 must be chosen to cause £J < 0. The particula-



40

choice is governed by the various algorithms of Chapter 2.

3.6 Adjoint Equations

In this section the particular terms necessary for the definition
of the adjoint equations will be developed. First, consider the partial

derivatives of the force expressions with respect to the state variables.

A. C.=C. (M) withM = M )—J‘;‘ *"f“‘?
* D D =Mx), x3x40 Xg) =
“‘x’
2 2 2
OCD -GCD M --GCD 3+x4+x5 9a (3.25)
ox, M Bx, aM az(xl) axl
ocD_ acD.aM ) acD x 1 s
8x., O8M 8x B8M . tx a(ﬁ) T e e
1 Y x3 14 5
B.Q=0 (xl.x3.x4.x5)
. . TR § 2
i) Vertical Rise: O =2 ¢ (xl)Ax3
3Q_A _2 8
Dxl 2 X3 3:1
3 3q 39 =§Q_=o (2~
x, Ox, 8xg o Bx,
:]e)




2Q_1
axi—zeA +xz+x
X3 TXq4 T%g
20 _
8x6~0
c. |T| = fen (x))
.@.Iif_l= _9p
8!1 axi
Combining the developments above:
Vertical Rise:
DFI_BT -aQ c -QBCD
axi axi D 9:,
i G
vk
bl UL
8x3 ax3 D 9 3
3F
8—;'=0 i=4,5,6
i
oF
z=0 i=1,..., 6

i=13,4,5

(3.28)

(3.29)



- . o]
Sin CZ (t-—tvr) Sin C5 f—a—-—xl

8cC
D 8xi

c,+05>

x

4

(3. 36)

(3. 31)



a~r oC
:—_2:-8—1.— SinC_, )CosC5 -[-:'?— CDa'Q——
- A B
*F
?—3'=0
)
) " b
8F3—{6Q C.+Q CD] x
8x3 3x3 D 9 3 5
9 3
_E‘é-.-- 2—0—. C *Qé)] x
8x4 8::4 D 3x4 5
3 9
-——8F3=-QCD -[a—-ag cD+Q—-—aCD] x,
X5 5 Xg
d
F3.—
3x, 0
6
Gravity Turn:
_l.. 80 p +Q?_C.P x
oF.
1l
x,

oF, *3¥4 EQ c
ox, [ 2 2 2B/2 fox

4 x3 <|~x4 +x57 4

} - 3

8F, i IT| x 5 5
ax, f[. 2 2 21372 "|ox

5 x3 ~i-:|:4 +x5) 5
arl

5
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{3.32)



—2_
axz B
oF |'r|x 8C
£- - ‘[:3 CD*Qb'x—D] Xy
3 (3. 34)

T
8F, ||{x3+x5) &C+Qf9 .

2%, =(‘z{_xzﬂtzr!z 2Cp fox, D %x, ] ™4
3 Pxgtxg

o ﬁl"‘;"s JPe ¢ +QacD .
9x, v Cix 24 q 2 / 3x, D 3xg 4
3 "4 7%
oF, _
o=, - 0
6
9F; 57 —n 0 . ,q %y N
_’_“("Z—'T'—Z’ 1o v
8:1 a:.l x3 +x4 +xs xl D :.‘ 5
ol S
axz =
oF lTlx
3 = C +Q3"—D x
8x3 (32 +x‘+x )’IZ 5 =, 5 (3. 35)
2 a
F3 IT!X - Q C +OC—D— x
8x xzi-\:—z«i-x \372 ox D O0x 5
5 4 4

AF, [r[(x 4) ) 50 ac

D
- z cC - —
X ~.“ +x, 6 +x cVB/2 © D ox CD +a ox ~g
3 3 4 5
aF
2 __.n

6

(25
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Lincar Tangent

—=-o0 i=1,2 j=1,...,4 (3. 36)

Second, consider the portions of the adjoint equations due to the
performance index without the equations of motion adjoined (i.e., due
to the Lagrangian terms, L:).

A. Vertical - Rise, Pitch - Over, and Gravity Turn

L =[q - AA(ZS)] 2 AA (37) +[ACC - AA(26)]2 AA (38)
where

AA(25) = q max

(P q-AA(25)> 0
AA (37) '{ 04 {q-AA(ZS)]s_O

AA(26) = 3.05
P, [acc-aAz6)]>0

AA(38) ={
o [acc-aa(z6j)<0

(3.37)

1 2, 2. 2
q =3 lx3 +x, +x5)
ACC =En L, Plg)A -qA cD] g

= ZE;-AA(ZS] 2 aap1) +2[acc - AnEe] 3RS AAGEY for i,
i i

" -,
aq ~ - ¢ .
il B4 ?f‘ cc. {' r— e S

1N 3 "..

i Tex A



O .
5 . -

e - |t AC n%"]/"s

3 L 3 3

ac
;:‘CC = -E\q ———XD +ACp —3-—: Ix,
4 - 4 4
ac
dacc [ D aq
= -fMaz +ACH 5 /x

8x5 Xg D 5 6
0

Acc . -lz ul -PA -qAC = - ACC/x
3::6 xg sp e D 6

aL
3;;6= -2 [ACC-AA (26) ] ACC AA(3R) [ x,

B. Linear Tavngent

L =[ ACC-AA(27)] 2 AA(39)

A
ACC=[U Isp] I

aace_ . (wl /%% <.AccIy
3x4 sp 4 4
aL
=0 =1,2,3
E
8L AA(39)

= =2 [ ACC-AA(27)

o U
il 0

= -2 [ ACC-AA(27)] AA(37) ACC/ X,

—~

Adjoint Equations for Vertical e, Pit<1l. Cver, and Gravit: Tu -

W
S

AP




. oL 2
-ll—a’ﬁ +)\2[ -x4/(x1+Ro) ]

2
4

aF

2
+ xsz)/ (x, + Ro)‘2 +2k/ (x+ R°)3 + & Sin x, + 3x11/x

+X\

[

3L 6]

2 2 2 2
* - Q" Si ‘oS >
+ 4[ . /{ (xl+R°) tanxz] +x3x4/ (xl+Ro) + Sm:-:2 Cos

2
t ) /x6 ] (3. 41)

2 2 IF
+X5[ x3x5/(X1+RO) +x4x5/ [(xl+Ro) tanxz].é_‘_{é /x6]

Cos x, +2 Qx_ Cos xz]

5

8L ;
-K -axz +X3[2(xl+Ro).ﬂz Sin x,

2 2 2 .2 :
+k4[ ~(¥5 Csec xz)/(&l'l-Ro)i-(xl-l-Ro)Q%Cos X,- Sin xg-zms Sin xz]

2 2
i - Q .42
+ks[ xx. Csc x I(xl+}«.0)+252x45mx£ 2x, 2 Cos xz] (3.42)

aF
9L 1
A3 Texy FMtA [ax /"6:‘
3 3
oF,
+X4[ -x4/(xl+Ro)+5;3-/x6]
oF
+x5[ -x5/(x1+Ro)-ZQSmx2 +{E /x6] (3. 43)
© 3L -1
Mok, TR tR)
—1
+ )‘3[(2::4/(::1 + Ro) + y / x6]
81-‘2
+X4[ -x3/(x1+R°)+a-;;- /:'c6 ]

oF

, 3
g | ‘xsl[(xlTRo)tanle - 28 Cos ‘2+aX4 /%] (3.44)
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e
o

N = S th f2xfis, 4R )+ 22Sinx, +eL /x, ]
'.5 ox "'3- -‘S:H' 0 e ‘2 P.’: 76 -

5 ) ’ )

-y

X, !:2 xsl[(x1+Ro)tan xz}.kZQCosxz‘.“g;’;- /x6]

oF
- 4 i ._—3 A
sA [ -xgfim +R V-5, /[ (x+R Vtanx] + ax5/’5;(3. 15

oL 2
-2 = ox -).3?1136
6
2
-14F2/x6
-A_F /*cz (3. 46)
5 376 :

Adjoint Equations for Linear Tangent Phase

& - aL ~ ~2 Caad 2 - L 3
.xl-a?l +x2[ -x3l(xl+Ro) +2k/(x1fRo)]
e A~ g 2 .
LR S xzx3/(x1+Ro!] (3. 47
X - X tX [ -%IE +R )] (3. 48)
2’8?2 LR T T s T )
X =L .Y 5
1‘K3- %, X, [21:31(‘5:‘l +R )]
~ =& "
+k3[ -x, (x1+Ro)] (3. 49)
~ ) N 2 ~ 2
"‘4‘&“'4 LR AR YA (3.50)

3.7 Gradients

The gradients with respect to.the control function, u(t), and control

parameters Cys---s Cgare develnped below.

u(t) H =2[ ACC-AA(26)] I AA(38)/W
u oF sp
—_— .
+ k3 o / X, (Vertical rise,
\ BFZ / Pitch-Over,
tN = /x
4 9 ¢ Gravity Tvurn)



fz; =2 [ ACC-AA(27)]

eF
,._‘“)L Y S
TR du T T

-~ -

ar
-~ 2 ~e
Ham /R
Y
" "a

{Tincar

The componen's for thesc gradients are as folinws:

(i) Vertical Rise:

(ii) Pitch-Over:

(iil) Gravity Tummn:
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n

0

R

o d
(iv) Linear Tangent: GFl - Isp r
du ——
\lrz +1
3F. I
Ba \'? 1
Hcl=-[¢x6o+x (t) )‘6“"“‘ (t+)-x )]
aF Brz : 85‘
H I:x [ x, +\ -——4'x
cz A, az 432 X6 T s o, 6
8F, a
?c-z-= -|T| [ sin c, (t-t,.)] (t-tyy)
aF :

2_ 2 )
b_cz-= JT] [ Cos c, (t-t, )] (t-tvr) Sin ¢,
aF

3 o
—5;;: [T] [ Cos c, (t-t,.)] (t-t_ ) Cos c,

-
ITi=nI - P(x;) A,
P -
81:- aF
= (X IX ) +(l /x )a
°3 2 Bc, 3
aﬁi _ l-,f' t
rY ‘2 . 3]z
8¢,y (r? +1
r . d
°F2 - "i"l -It
€3 (r2 4 P72
T AF OF
H =%, 5o /Ty X, acz A
€4 4 4
oF
- Lo 1y (?+1) 32
€4
oF,
=2 = |T| 1/ (r? +1 32

50

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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oF

A -
= |T| Sin c, (t-t,.) Cos c,

oF

—2 _dT| Sinc, (t-t )Sinc
2 vr

acs 5

dc

(3.61)

3.8 Adjoint Function Bounda>y Conditions

Laad

£ N =

8 .
wilere B.. = —g}-
1] 9X)

H(tz) =H(t)) = K (t)

In order to calculate XT (t_) 53 (j-=

J

Firs:, consider the equations for B3 (]

i

wo
W oo

(3.63)

1,...,5)and ‘bx (ts) are required.

1,...5).
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Define: xl=x1+Ro
-~ —e— 1
z . 2 _ 2 2 -
g3..‘14 +(x5+leSme) ‘["4 + ( )] ya
I 1
BSI';; -"L ] 2 2 ( ) QSmxz
1 “.]_‘
332-—2 ]Z 2 | ) xIQCoch
-1
=E[ ZZx4
1 -1
‘i' 2 2{ ) (3.64)
Fina]ly,Lconsider the contributica due to éx (t; ), where
- 2
-)=171 ® (t- - )
¢ (ts) { Cos [ (ts)] Cos tg] L
. 2
5 +xIQSmxz)Smxz, »
- Cos @ P =" P
42 +(x5 -l-;l 2S:n x,j}-;- tg 7 7
. “ {3.65)
Then,
¢ . 9y
bxi‘z" B Py (3.66)
Definex. =R +x_,. Then
1 ] 1
(x + -QSinx Sin x
N 3 52 ! — Ll g 1 - Cos Qt-
E +(x51'- zIQSmXZﬂZ s
il’SmxZ ( ) Sin xz . ) o sin x
9’1 [ ] [ ]312 ' 2
x Cos x +2xl’?Smx Cosx2
axz L ]1/2
) Sin X 2 -

I
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| COMENURR ™MEPLFEMENAAL ':(}-
The compular irplermarsatian af rasi-Newton algorithms for
?;?f.o sointinn ¢f Bolga prnhiems e Harresed in ;’?*aprcr 2. W Chanter
3 the skatile asrent ontimiratiay problem was formniated 2nd was not
‘precisely in the Bolza fn:m.‘ Ia particvia - (ke performeance index is

composed of four integra.ls al? of which b2 /v Giffercent eqnations of

motion. :Fnr,ﬂ»:er, the staging and fiuol times are not knowr but implied
by state variable terminal censtraints, ¢ (x,) = 0. Because cé;minal
boundary conditieus and state va.riable‘inequality constraints are handled
2 by pelnlrymethod; it has been found that a:considerajble sa--ings in
. - compater time can be achieved by real time hnman interaction with
&e:mti!xg program by wav of 2 CRT display terminai. Problems
“ ta!u;t:ia-te:d with the storage requiremerts of the quasi-Newton algorith—:« ‘
__‘also had to be solved. One important clement of all the algorithms .
described in Chapter 2 is the one dimensional search { 1-D search),
A large percentage of CPU titie is consumed in the 1-D serrch. I's
; curacy and efficiency nave a great effect nn»*he success of the

alrorithms. These various nractical censideratinns will be discussed

in this chanter along with 2 full desarintion of *he prog-am itself.

'n
»
e
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nbe SolT FRTppee bl T ST e £
traiectory ontivrization progenm. Tie eauence of €roTLS is similiar
tc those prosented in ACi:ap!:er 2 vrith H'n addition of a CRT disnlav
termiral for humau operator interactien with fhe program whiie it is
executing. The main itcration inop cansists of the forward integratior,
: backward mtegrahm, calculation of seas rch direction. 1-D search, and
convergence check. These operations are done repeatedly for a given
set of penalty coefﬁcxents untxl an "a.ccep‘able" degree of convergence
is obtained. At this point the lmman operat-er eva.luates the final con"rol
and assoctated trajectory grap!nraly on the CRT displey. Ihe penalty
coefficient valnes are appro;iri.a.tely d:a.nged by the operator and the

iteration loop is re-ertered. This process is repeated until the

operator is satisfied that a farther increase of penalty coefficients

will not yield a "better" control and execution is terminated. The final

control and associated trajectory are then plotted by Calcomp ior future

analysis.
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4.2 Staging and Final Time

The shuttle ascent trajectory optimization problem is formulated
in suck A way that tg and te the staging and final times are free. The
cutoff condition in both stages is determined by propellent exhaustion.
Recall that

Thrust = I.p u
where u(t), the magnitude of the mass flow rate of propellent, is one
of the controls to be optimized. All direct numerical methods require
a first guess for u{t). This gues: is usually sto red pointwise at certain
known times. Coansider the bodost phase of the trajectory. Assume u(t)
is stored at n equally spaced storage locations and is piecewise linear
between storage locations.

+ 3 T

N N

ﬁ STORACGE LOCATION

-
o~
we
*qr
w,

-]
)
[~

<
-
-
L 4
q

TIME AXIS

3
P

"l-

At

Figure 4.2 Centrol Storage
ui (i =1,n) and n are known values.
The mass of propellent m, is known and must equal the area

under the u(t) curve,

= | ug
m, [.z_.+uz+. .. +“n-l+z' ]At
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Thus

me

-‘11+ +“n
2 Yottt

At

Since At is known, t8 can be computed,
t' = {n-1) At (assume to = 0)

The same procedure is used to calculate te

 Now consider the interval between storage locations J and J +1

which corresponds to the time interval t; to t a1
“ :

F e - —————-—

H‘--‘-Il.l.'.'

3

+1
Figure 4.3 Single Control Segment

On this interval, u{t) =23 T + b where T =:-tJaml

u -

J At

Since u = -;n. the mass can be obtained as a function of T by integration,
T

m(T)=m_- [ (2as+b)ds
o

J

AT’ +BT+C

Where,
A= -a
B=-b

C= mJ ( mass a2t start of interval)
Because of the assumed form for u (t) it is possible to calculate

t'. tf. At, and mass (t) analytically. This avoids the problem of guessing
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a l:f ard At and integrating the whole system of equations while checking
for fuel exhaustion. It also avoids the need for extending or contracting
the control guess if the mass of propellent is not zero at the guessed tf.

4. 3 Storage Problems With Cuasi-Newton Algorithms

In Section 2.2 it was shown that 2 i + 4 time functions mus t be

storeqd after the ith iterate in order to compute the i +1 st search

direction. Each of these functions is stored as a n- vector of numbers

which correspond to the function values at n equally spaced points on
[to. |:f ] . Thus (2 i + 4) n floating point numbers must be stored after

the ith iterate. The computation per iterate also increases because

of the increased number of inner product evaluations. Thus it is a practical
necessity to restart the algorithms to a pure gradient step every qth iterate.

It has been found that 3 < q <8 is a good choice. The value of n must

be larg. enough so that a'goud' representation of the functions is

obtained. For the shuttle optimization problem the time interval is

approximately 500 seconds and n was chosen to be 500. Thus storage

n‘ms;: be allocated for (2q + 4)n = ( 2 x 8 + 4) 500 =10, 000 double

precision floating point numbers. Additional storage must be allocated

for other variables used in the program and for the object pro~ram which

is generated from a fortran source aeck of 3800 statements.

During the initial testing of the program on the University of
Michigan IBM 360/67 virtual memory computer all storage was done

in fast memory. Howaver it was found that core storage was exceeded

when the program was first run on the JSC's Univac 1108 . .nputer.



60

To overcome this difficulty the 10, 000 double precision floating point
numbers needed for the quasi-Newton algorithms were placed on drum
storage. This reduced the amount of core storage required allowing
the program to fit cn the 1108. Upon running the modified program on
the IBM computer a considerable savings was realized in reduced
v irtual memory é}arges. It was also found that no significant increase
in the amount of CPU time was incurred. There are two reasons for this,
i) a very small percent of CPU time is spent calculating the search
direction. Most of the CPU time is spent integrating the equations of
motion. On each iterate a2 forward integration and a backward integration
are required to determine the gradient and a number of c@st evaluations
also requiring forward integrations are performed by the 1-D search.
ii) the updating equahon for H, y, and the equation for di are
summatig..s: vghi.ch require inner products of the stored functions in
the s:;mesiﬁq'wnpeas they were generated and stored. Assume H, ., y, .,
are stored in a file,

and d, i.re to be calculated. H_ y_throughH, .y, ,

Start of
File

/

Hy, Hn By, |——— [H,v,

B e L

Read
Write
Pointer

Figure 2.4 File Storage Diagram.
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At the end of the last iteration the file has been rewound. The updating

equations for Hi will read Hoyo. Hlyl, ..., H in order,

41 Yia i-2¥i-2
calculate H. . y_ ., then write H,
i-1 “i-1 1

aYia onto the file and rewind. Con-
currently the equation for di has been using the Hy functions. The files
in which Hy and s are stored need only be rewound once on a given
iteration and no forward or back spacing is required. Ewven if tape
were to be used as the storage medium, instead of fast core storage,
the increase in computer time would be small. When drum storage is
used the increase in computer time is insignificant. Thus there is no
need to restart to a gradient step because of limited storage.

As mentioned previously the computation time per iter2te increases due
to the increasing number of inner product evaluations which must be
made. The inner product is a quadrature.

t

<u,v>: [ hTva

t
o

whereuand v are stored pointwise. If it is assumed that the stored functions
are linear between storage locations the evaluation of the inner product

reduces to a summation. Consider the interval tl to tz,

u / v
L
8 5 5

Let T = t-t, and At = ¢t -t then on [tl.tz]

2

u(T)=aT+b andv(T)=aT +p
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where
a=“2‘- a =v_ -V
at 2 1
At
b=ql p'-‘-vl

The inner product of the functions betwcen Yy and t is;

At
<u,vy . = [ (aT +b)(aT +B)ar
Tt

at
flaa T® +(a g +ab) T +bp] at
0

3 at b
=§-§At +§*——Zi‘—-' Atz+bl5 At

and the total inner product is

-1
<u,v> o, = 2 <u,v>
o' i=0 " i+l

f
It was found that this method of evaluating inner products is considerably

faster then higher order quadrature formulas and that convergence rates of

the algorithms do not suffer.
4.4 One Dimensional Search ( 1-D Search)

On each iteration a search direction di is generated, and then a
new control is calculated,

Y

=u, +€, d,
i i
The goal of the 1-D search is tofind a scalar parameter a, which yields

the greatest cost decrease, At such a value it is necessary that

9 -
Yo J(ui+adi)-0,

which is an important element in the convergence proofs of the quasi-

Newtonalgorithmsfor the linear quad.atic problem.
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A large fraction of CPU time is spent within the 1-D search

and its accuracy and efficiency greatly influence the convergence
aJ
rate. For small a,da < 0 thus we can expect a functional relationship

with the following form,

J (a) for @ = 0 J=J(ui)
J{ ui+l) will occur at
J(ui) 1 a =a%

Figure 1.5 Cost vs

As a increases J will decrease until the higher order terms in
the cxpainsion dominate and J begins to increase again. The 1-Dsearch
attempts to find « *. Th: performance index is evaluated at @ = 0 and
a = a, where . is a guess for a *. a is then increased or decreased

1 1

until the minimum is bracketed, that is thrée points are found such that,

J(e)

a., £«
ai j k

R Ja ) > Ha)) < J(a)
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The function J(a ) is approximated by a quadratic curve,

J@)=aa’+ba +c
where a,b, and c are determined by fitting the quadratic curve through
the three data points. The minimum of the quadratic curve is given by,
L daa +b =0

da
b
2a

The performance index is evaluated at @' and if,

a =

J(') < J (aj)
the control generated by @ is chosen as the local minimizing element. If

J(a') > J(aj)

a new quadratic curve fit is performed with o', @ and,
a, ife'> a.
1 J
or
ifa'< a,
@ fa'<a,

This process is repeated until a minimum is found.

4.5 CRT Graphic Display

The rpace shuttle ascent trajectory optimization prnblem developed
in Chapter 3 is a Bolza problem with the addition of state variable
inequality constraints,

acceleration < ACC___



Dynamic Pressure < Q
max

and terminal boundary conditions,
50 x 100 nm orbit
Inclined 28.5° to equator

Entered at perigee

where
ACC = 3.05 g's boost phas..
max
ACC = 3.0 g's orbiter phase
max
Qma.x = 650 psf.

This optimization problem is replaced by an unconstrained optimizarion
problem where the terminal tcundary conditions and state variable
inequality constraints a e enforced by the method of peunalty functions.
The . 2w unconstrained optimization problem has sever independent
penalty coefficients, and the performance index is

J = -Wo + P1 [ ERROR IN FINAL l'\‘_ADIUS].2

+ PZ [ ERROR IN FINAL RADIAL VELOCITY ] 2

+ P3 [ ERROR IN FINAL TANGENTIAL VELOCITY] 2

t
+P, [ - q_,) Ulaitra__ )dt

o

t
2
s
+ P, { ° (acc(t)-ace )" U(ace(t) - acc ) a+
t

(o]

t
f 2 .
+ P6 j; (acc(t) -accmax) U (acc(t) -accmax) dt
s

+ P7 [ ERROR IN FINAL INCLINATION]



A

Onc O
19>0

u(n) ={
Here Pi (i=1L2,3,7)are penalty coefficients associated with +he terminal
boundary conditions and Pi (i =4,5,6)ore venalty coefficients associated
with the state varia®'e inequality constraints. For a given set of penalty
ooefﬁcignts a particular uncor strained optimizatior problem is defined. "
The solation to the original constrained optimization problem is
approximated by a sequence of solutions to the unconstrained problem
generated by letting Pi {i=1,...., 7)~w.As Pi {1=1,2,3,7) are increased
the solutions generated will more closely satisfy the requirements of a
50 x 100 nm orbit inclined 28.5° to the equator en ered at perigee.
Likewise as Pi (i=4,56)are in.reased the state variable inequality
~onstraints on dynamic pressu:re and acceleration are more strictly
enforced. The cltimate goal is to find the control history which vields
the maximum lift>ff w2ight and satisfies all seven of the constraicts. As
expected, in practice as one penalty coefficient is increased the error
associated with it will decrease while the errors associated with the
other coefficients will increase. Thus by improving the trajectory
in one respect it is possible to lose something somewhere else.
Sensitivity to changesin the diffrrem ©<- 'ty coefficients also varies. As
the penalty coefficients become larger the overall problem wiil become
increasingly sensitive to changes in the control and numerical instability

will =ventually. result. The way in which the penalty coefficients are
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increased will stronglyinfluence the overall convergence rate of the
algorithms. The main drawback to the method of penalty functions is

that the penalty coefficients must be increased in a problem dependent
way. Even for simple example problems which require little computer
time for a trajectory integration and which have only one or two penalty
coefficients, the choice of these coefficients and the vay in which they are
increascd is critical for rapid convergence. Because of the complexity
and relatively long computer time required for a trajectory integration

of the shuttle ascent optimization problem a better method than trial

and error is required for choosing penalty coefficient values.

By using time sharing com.puters and CRT display terminals the
problem of choosing penalty coefficient values can be very efficiently
solved by human operator interaction with the executing program. At
the ead of each iteration execution is terminated and control transfered
to a CRT display terminal. Because of time sharing this inter-uption
of the executing program is very inexpensive. At the request of the
human operator important information is then graphically displayed on
the CRT. The information is evaluated and a decision on changes of the
penalty coefficicnts is reached. This information is communica.ed to
the comgputer and execution proceeds. By placing a human operator in
7 ﬁthe”program ifera.tion cycle convergence times are red ced, fhe
computer is used more efficiently, and the operator quickly builds an

intuitive feel for the physical problem being solved.
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For the shuttle ascent optimization problem it is helpful to
graphically display dynamic pressure, acceleration, and u as functions
of ime along with terminal miss values. The best convergence rate
was achieved by first increasing Pi (i=1,2,3,7) yielding a trajectory
which comes''close" to the desired terminal boundary conditions. Then
Pi (i9® 4,5, 6)are increased 0 e_nforce the state variable inequaﬁty
constraints while simultaneously increasing Pi (i=1,2,3,7) so that all
inte rmediate trajectories remain "close" to the terminal boundary
conditions.

The arnility to interact with the executing program <an be useful
in other ways. The 'mterrelationship of adjoint, state variable, search
directior, and gradient time histories can be convenientlyanalyzed using
the CRT display. In conclusion the ability to comraunicate with the

execvting progran is a valuable tool for 2nalysis of optimization programs.

4.6 Subroucine Description
Th2z computer pragram cousists of nineteen subroutines controlled by

the main control program. Figure 4.¢ presents a subroutine map which
illustrate:s the relaticnship between subroutines. In this section the
fur.ctioa of each subroutine will be explained.
MAIN - reads inpu’ parameters, calls SPLINE to obtain curve fit of

aerodynaranic coefficieuts, controls forward, backward, and

cost inteyyrations, calls CAL to determine constant gradients,

calls SEARCH whick contains the 1-I) Search, also contains

logic for interaction with CRT display terminal.
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MAIN CRT
DISPLAY
SPLINE
!
SEARCT INTEG ALGOR % CAL
]| D@
L]
* E 3
FCT I DRKGS OUTPI

, MODEL

% thare are three FCT's and three ourP's1=12,3

Figure 4.6 Subroutine Map
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SPLINE - : ubroutine which interpolates by piecewise cubic splines

aerodynamic coefficients such as CD which is given in
tabular form as a furction of Mach number.
INTEG - contains the logic to determine the mass distribution, staging
time, final time, and caiis DRKGS for forward, backward,
and cost integrations.
ALGOR - contains the various algorithms which require a gradient
‘g(t) as the input and produce d(t) the search direction as the
output.
CAL - performs the quadrature which calculates the constant gradients.
SEARCH - contains the 1-D search,i.e. dete@hes @ which minimizes
the performance index, see Section 4.4.
TRUNC - performs the truncation of new controls generated by varying
@ in SEARCH.
LAMF - calculates the value of the adjoint variables at t %
LAMS - calculates ‘he jump in adjoint variables at t'.
POLAR - calculates the jump in state variable at t and calculates the
inclination of the orbit.
DRKGS - a double precision fourth order varviable step size Ridnge-Kutta
integration subroutine contained in the IBM SSP package.
FCT - computes the right hand side of the system of equations to

be integrated.

ouTp

an output subroutine used by DRKGS

CRAFT - calls spline to determine C ) and 9Cp
dm
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ATMOS - calls MODEL to determine density (#),pressure (p), and .
speed of sound {a); also calculates

® 2

Jh éh éh
where h is the altitude.

MODEL - contains the atmospheric model; see Appendix B.
4.7 N~nn_xerica1‘ Results

The final control history and associated trajectory which will
be presented in this section are the result of computer runs made at
both JSC and at the ﬁniversity of Michigan. The initial control guess
was:

Cl = payload mass = 80, 000 lbm.

C, =¥ =0.689241" /zec.

Cy=a=-0.4340x 1073

C4=b = 0.365070

Cs =¥ = -19. 0049°

u {t) = 987
This resulted in a trajecrory with the following terminal miss
values,
A R = -180, 000 ft.
A U =-200 fps.
A V =602.1 fps.

Inclination = 26.23°
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The staging time was 118. 73 sec. with a final time of 503. 3 sec.
The state variable inequality constraints were also violated. Q reached
a peak value of 819 psf at 65.2 sec. while the maximum acceleration
during first stage was 3.8 g's and during second stage was 3.9 g's.

With the above initial control the program was run on JSC's
computer for 12. 75 minutes. The resulting final control became the
initial control for subsequent runs made on the University of Michigan
compute~ An additional 45.7 minutes of computer timejwere expended
2a *he :L}niversity of Michigan computer for a total run time of 58.4

1 ‘.ues. The penalty coefficients were;

INITIAL FINAL
P 108 10t®
1
P 107 10t?
2
P 107 10t?
3
6 12
P, 10 10
P 10° 10>
P 10'° 102
6
P, 107 10"

The final control is;

(‘.1 =101, 300 1bm

C, = 0.631857 ©/sec.



C, = -.478541 x 1073

C4 = 0.366590

o
CS = -8.5

u (t) - Figure 4.7
On the converged trajectory, the staging time is 121.1 sec. and the
final time is ‘504.0 sec. Figure 4.8 shows the angle v above the local
horizontal at which the thrust is orientated. Figures 4.9and 4.10 indicate
that the state variable inequality constraints are being enforced. Figure
4.11 shows the time history of altitude vs time. The terminal miss
values are,
AR =-4,700 f&.
AU=1.2 fps
AV=52%%s
Inclination = 28. 8°
These values could be improved by decreasing the integration

stepsize.
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CHAPTER 5
TERMINAL CONSTRAINTS AND VARIABLE }INAL TIME CONLIDERATIONS
When a function space gradient-type technique is emploved, cue
must continually contront the problems associated with termina?! ~onstramns-
and variable firal time. Usually for flexibilit' nd ease of nrogramm.ing
a penalty function iype of appreach is preferred to a projected gradient
approach. iIn this chapter we sﬁall compare the s*and‘:_-.rd senalty function.

S . 18 s '
ap-rrach to the Hestenes’ muiriplier miethod =~ on a smale provlewn. The

results for this narticular problem indicate that the multiplier metbad
does not irnprove the nerferivance enough to merit the additional progranminy

and complexity.

The major result of this chapter is concerned with a sirrple pracedure .

which apparentlv iInproves considerably the rate ~f convergence .

giadiént-typ'e' metheds vrhen penalty functions are eniployed on c.risble
final time problems. The result is simply fh_at the initial estim te-of

0) ‘ 5

£

t,sa'gt"

£ ¢ . should be less than the optimal t, - value,i ééy -

i -

i

In fact, it appears that a physically unres zonable choice of
s () = o
< tf

{0) _ >

¢ >tp with respect to rate of convergenc.  Alchough

which guarantees te is Vsupé-.rior to a-physically reascnable ini‘ial

trajectory with t

this property has yet to be proved mathematically, it ap;:c - o be
heuristically justifiable, end all ¢ cur ~umerical simmulatior . confirm
the trend. Finally, it will be shown that a recenrly pror »sed nethod for

16

treazting variable final time problems by Tripathi and Narendr.. ~ is



80

essentially t¥~ well-known methced developed by Long 17 in 1965.

5.1 Variable Final Time Prob':ms

Consider the performance index for a time-optimz" control problem

with fixed-endp- 1t tvpe tzrminal conditions
I

n
I=Ct Z (x - “ . - .
CY PNy +iz;lci (x; - =0 (5.1

f if
where
Pi are pencliy coefficlen:s for terminzl constraints; Pi =0 if x, (t,)
is not specified.
C, a.re‘mnltipiier constants for the multiplier methodla; C.=0if
she penalty ﬁnctinn method is used.

In the time-optimal control problem the algorithms require an

0
initi1al estimate of tf, say t :. y On future iterates, a procedure for
updating tf must be specified, and this will affect the rate of convergence.

The ‘>llowing bave been proposed in the literature.
1. ’i ir reduced, the pertinent functions are well-dafined for all t.

)i 4 t increases, the control ir set equal tu the value at t (l), which

is tf of the previous iterate, in the extended interval { tg) te (iﬂ)} .
The program used in this chapter is based on this technique
and it worked satisfactorily, at least for relatively
simple proti~ms.
2. I 1:f increzses, the various functions are suitably extrapolated

ov~r the new ranze.

3. The functions ruaintain .: sarie form, only the time scale is
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modified to tcke care of the changes in the interval | t . tfl.
Tripathi and Narendra 16 found this meihod to be satisfactory
in practice.

4. Convert the problem to a fixed final time proble:mn with the
transformation below. ( An additional parameter appears due
to this transformation, and the method was proposed by R. Longn).

A. Definet=as
where x. = f (x,u, t): the equations cf motion
a =constant to be determined
s = a new independ>nt variable. 6 <s < i
B. Let: s = 0 be the initial point.
s =lbetheﬁnalpoint=?tf=a.

C. New equations of motion

g d)
() ds
x =af (5.2)
a =0

Note: Since "a" is an unknown constant parameter,
an initial estimate of “a'" is necded and an
updating scheme must be defined.

It will te shown that the r-ethod propnsed by Tripathi and Narendra
is cssentially the same as the method by Long. The justification is as
follows:

ﬁ tf(i ) g, )

.
t!,

shr uld be updated by

then following Ref. 16, a function, say K {t),
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00 < B (e/a). (5.7)

This method causes tie function k (t) to be compressed or
expanded as tf( tH) d( ~reases or inc-<ases, respectively.
The method can be defined alternatively by introducing the independent
warizble. T = a t. Then, the function for the next iteration is
x‘i*"(t) = k(i) (t/a). ¢, = 0) {(5.4)
For example, if
ki(t)=tz+t *Vte[O.tf].
then, the function for the (i +1) -iterate will be
(t)=ki(tla)=§z—z- +L e [ 0, atf] :
Thus, Tripathi :nd Narendra's n.:thod can be represented by the

l(i-l'l

transformation T = at, if the relation I:f 1+ 1= e tf ! holds.

In the application of Long's methed, the value of the constant "a"

has to be guessed initially to start the scheme. Assume that at the {i + 1)

iteration.
alttl gt (5.5)
This i.li:plies
ti«}l=ai+ls (5.6)
ti =ais, (3.7}

Substitution of (5. ato (5.6), and use of (£.7) implies

i i+l i it i
+l=a. s=aa s=aa -T':at,

a

t

or,

t.' =at. (5.8)



-~

R3

which is the transformation equation used ty Tripathi and Narendra.
Thus, method (3) and method (4) have similar basic characteristics.

In tke n. xt section method (1) above is employed, and numerical

&

examples are presented to show t:at tf(o) < tf gives a more rapid rate
(o) .+

of convergence than tf >tf .

5.2 Numerical Examples for Minimum Final Time Problems

Example 1. Zermelo's problemn

X =vcos @
Yy =vsin @
e =u (5.9)
where v = constant,
x(0)=x =0,y(0)=y_=0,0(c)=0_=0
Ju] < k, k maximum tarning rate
Determine the minimum :ime to reach che specified final states:

A x (tf) = free, y (tf) = free, 0 (tf) = Of (5.10)
E. x (tf =Xp ¥ (tf) =Yg ] (tf) = free {(5-11)

For these simple problems, analytical solutions can be obtained
without difficulty.

Case A: It is easily shown that given v =1, k = .50 and 0, = 2%, the

f
cantrol will be either u =4+ k or u = -k for the vehicle *~ rea~* the
specified headiag in mi-.mum time.

The cosi functional is
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2

2 2 2
J=Ct +Pl(x- f) -I-Pz(y-yf) +P3(0-0£)

f

+ Cl (x-xf) + Cz (y-yf) + C3 (G-Of) (5.12)

where I?1 = PZ =0 and C1 = Cz = C3 = 0 for the penaity function method.

The optimal trajectory is a circle centered at (0,2) with radius two for

* %
0_=2% =.5¢, t_ =12.56 secondg, and

£ | S 3
Initial Conditions Terminal Conditions
x =0 x_ = free
o £
y, =0 Y= free
e =0 0_=2x=-6.28
o £

The purpose of this problem is to show how the conjugate gradient

method is affected by the initial final time estimate, tf.(o) Let C =3,

C3 =0, P, =100, and the integratior stepsize = At = 0.2 seconds.

3

*
(1) Consider tf(o) =2 seconds << Ve The algorithm increases
P
the final time to 12.65 seconds with n(z) = +.5 in two iterations,
(see Figure 5.1.a).

) *
(ii) Consider t (¢! =19 seconds >> t.. After six iterations, ¢ (8)=12.084

t ¢ £
12\
seconds with u = +.5. (See Fig. 5.1.b.) After two iterations, tf‘z"-' 18.96.
*
(0) =2 -t_ case

Thus, both cases converge 1apidly, with the tf ¢
having the fastest rate of convergence.

Case Bk The exact solution for this case is as follows : To reach the

sp;ciﬁed position’in miaimum time, the vehicle wiil first turn at the

maximum rate, and then switch to the singular arcu = 0 for s'raight

line flight to the desired position, i.e.,

u=+k Y te [to. tl]

u=0 Y ie ;[tl, t;] . {5.13)
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. els . o
- === initial control estimate, ':f =2

- optimal solution

\\ control at 2nd iteration
\
\
\
\
A :
O———=T % % 12 1+ % 20 =z °
(a) 01_(0’ << --:
a

- S
2 4 6 8 10 12 14 16 182022

(0) *
{(b) tf >> tf

Figure 5.1 Control Profiles for Example 1, Case A.
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The correspondinyg cost functional is (5.12) but with C = 1.

P =P =W C =C, -P, =C, =06 (penalty function method)

1 2 1 2 3 3
Initial « onditions Terminal Conditions
x =0 x, = 4 miles
o f
=0 r = i
Y, Y¢ 1 miles
o, =1 of = free

The optimal final time is t; = 5.058 seconds. Four caces are

considered in this example.
)

= a5
£ 4.6

(1) tf(o)z 2 seconds < tE' . The final times goes to t
seconds on the first iteration, and to 410) = 8,042 seconds
in ten iterations. The position error after ten iteratiors is
within cne percent (see Figs. 5.2.a and 5. 3).

(ii) tf(o) = 4 seconds. This guess is ciur.: to the true minimum.
The program performs smoothl and the terminal position

erreor is less than one percent (see Fig. 5.2.c).

(iii) tf(o' = 6 seconds ( slightl; .rger tuan the true minimum).

(12}

£ = §5.78 seconds, after

Little improvement in final time, t

twelve iterations. The position error is about 2.5 percent,

and the program terminated due to insignificant cost change.

Another interesting aspect of this case is that the control

profile converges to a profile far from the optirnum. This

implies tkat an initial guess wiih tf(o) > t? may have the tendency

¢t~ converge (apparently) te nonoptimal solutions (see Figs. 5.2.d
.. 3).

DY 10 seconds >> t* . After eight iterztions, the position

f
rcr is less than .2 percent. However tf(s) = 9.87 and again



——=== initial control estimate

cmm—eea. OPtimal control u

-e—e—e— countrol of last i*eration |

.5 H 5

5 *
~4 5 6 78 910
3} ¢ 192 2 sec, +7 = 5.10 sec..t 2= 5. 048 sec.
£ f £ ) .
- {c) ':f = 4 sec., tf = 5.10 sec.
tf(ZO) = 5,062 sec.
u u
.5 ]
0 ¢t t
x .
)1 () 210 sec.. + = 5.10 sec. e 6 sec., +.525.10 sec. .
f t £ £
tg(s) = 9,869 ser.‘ '{(9) =5.20 sec.

I'igure 5.2 Courtrol Profiles for Example 1. Caze B
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the control profile moves in the wrong direction (see Figs. 5.2.h and 3, 3).

Example 2.Flight in a Horizontal Plane

The eqnuations of motion for a roordinated turn in a horizontal
plane, -with the thrust always aligned with the velncicy, are

dx

dt - Vcos B

%t): = Vsinp

dv _(I-D)

dt  m

v_d_E _ Lsing

dt m (5.14)

dm _ -T

dt c

To maintain the aircraft in the horizontal plane, an algebraic corstraint
is imposed
L cos ¢ = mg, (5.13)
and the parabalic drag nolar is assumed, i.e.,
, ;

Cp = Cpo + K5, (5.16)

where CDO and K are indepeadent of the Mach number and the Keynolds

number and

D =1, sc_ V2. (5.17)

Two of the *hree functions T,p,¢ may be identified as controls with
the :hird determined by the conscr2:nt (5 15). In this example thrust

maynitude and bank angle are controls which are all bounded, i.e.,



0

o : { <o ([t
(t)min =c !‘t):( (t) max

T . <I T
min — max

I~

{(5.18)
o (t) . = -a () for a symmetrical aircraft.
min max
The cost functional to he minimized is

2

_ . 2 2 2 ~ 2 2
J-= th : P1 (x - .\f) + PZ (y—yf) + 1-3 (V-Vf) + P4 (P —Bf) + Psam--mf)
+ c1 (x-xf) + C2 (y-yf) + c3 (v-vf) + c4 | -p f) . c5 (m—mz).
{5.19)
A relatively simple case is selected to show how the initial final
time estimate will affect the performance.
Initial Conditions Terminal Conditions
x =0 x_. = 6 miles
o f
v, ® 0 yf = free
. V=2.2 Mach~-2136.2 ft/sec V - free
- N =
i30 =" ﬁf free
W =8611bs W_ = 4341bs
Again the penalt()" function method is used, and Pl = 1600.Pz = P3 = P4 = P5 =0,
Ci =0,1i=1,...,5 C=1.
v The optimal solution for this case is tf = 5,75 seconds. The thrust
profile is the boost-cozst type and the bank angle is zero for 2all time.
Three final time estimates are considered. (Figure 5)
1. tf(o) = 4 seconds, progran. forces the final timne tco the ne  .borhood
of t¥*

£ in three iterations and obtains tf = 5,79 on the fourteenth

iteration, with *he boundary condition error less than 0.2 percen'

(see Fig. 5.4.a).
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l{")
Ctu . . . .
2. t)_\ " -6 seconds, This ir avsin 4n esuimate close to cptunal,

but stightly longer than the true minimum. The control profile
S .

approached the boost-coast type and ended up with 1:f = 5,04

in fourteen iterations, i(see Fig.5.4.b),

3.t (9)

R = 10 seconds. After twenty-three iterations the terminal

position error was less than .1 percent (xf = 6.00003;, but there
was insignificant improvement in flight time, t:f =9.85. At the
thirtieth iteratior, te started to improve to 8.76 which is still
far from the true minimum time. The thrust control profile
tends to the coast-boost type which is far from the optimal
solution {see Fig. 5.4.c). Heuristic reasons for the behavior
in the examiples above are given in Section 5, 3.

5.3 Method of Multipliers

A brief comparison of the penalty function method and the modified
multiplier methcd (M M - 2), Ref. 19, was undertaken in the study. Based
upon the theory by Hestenes18 MM - 2 should .:rform better than the
penalty function method. QOuix experience has been th.t,with the conjugate-
gradient algorithm, some improvement does occur. However, the
improvement is not significant enough tc justify the additional programming.

5.4 Con~lusions

The examples in Section 5.2 demonstrate numerically that the

(
Jhoice t (0)

£ t; appears to improve considerably the performance of

gradient -tyne retheds when penalty functions are eiaplored. Although
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—— e iNnitial gnessed control

- optimal control

g CONFrol on last iteration

— t
7 g8 9 10
*f(13)= 5.79 sec
u
t
1 2
(b) tf(o) =6 sec., +
u
1 2 t
(c) ff(o): 10 sec., +iﬂ:= 5.75, ‘f(30): ©.%77 sec

Tigure 5.4 “ontrol profiles for Example 2.



a mathernatical proof of this fact (which would involve & rate-of-

convergence-type prcof) has not heer obtained to da.‘e, the fo  .sing

_heuristic argun ant is offered in supporc of the possitle-yenerality of

this .ouservation,

Conr.ider a tivne optimal contrel problem with ¢+« i} cunstraints,

y P (' BV
whare tf‘ is the nptim.l linal time. Suppose t:,\) Tt -Thewn, :tis in-

possible for the initial trajeé.;cory to meet. the'fbcundaz <cnditions, and-

(1) 0}
R

e { ~ . ) :,, B ) R
‘nust be greater than ri', to decrease the error on the teriminal

constraints. Thvs, the optimai solation has the unique characteristic

of being the closest trajectory to the initial iterate, with respect o
final time, which satisfies the termiral constrainis. (n the other hand,

if tgo) >,t§'-’ , then it is probable that there exist inxfinitely many ne»>~by

solutions wlich satisfy the terminal constraints. Sin. = with penally

functions terminal constraint sarisfaciion is @ major part of the per-

formance index, ther=z exists the tendency to "lock-ir on the terminal

cor.ditions at t > tf. That is, the optimal so¥ution r. longer posvesses

the unique property of being tt e closest trareciory +'hi~h satisfies the

boundary conditions. With regard to mathemsztical implications, the
. [ 3

- . .o (O I
steterments above imply that the mini  m is 'flatter' if tf ) > tf than
n_)) o )

it {tf.



CHAPTER 6

THE PRAXIS ALGORITHM

In the previous chapters function space algorithms for minimiza-
~ tion have been studied. In tkis chapter we shall consider a2 recently
de 7eloped parameter optimization scheme which does not require the
objective function tc be differentiable. Such a scheme is of use in
;n'oblems where it is difficult or even impossible to find the partial
derivazives of th- objective function directly.

* ¢ shall :I_st discuss Powell's methodzo and the modifications
due to .;'lel:cherz3 and Brentzs . Some specifi- properties which are
closely related to convergence are presented along with an application
of the method to a time-optimal control problem. Also, the subroutine
of Appendix D Las been built into the NASA -JSC PEACE paramete~
optimization program.

6.1 Powell's Algorithm

The basic concept of Powell' 8 Algorithm is to minimize a scalar
function of n variables, say f (x1 ’ - e ey xn), by searching along n
directions which span the space. Thus, for one iteration, the basic

procedure is as follows:
th .

Let Xy be the eatimate of the vector x on the J iterate, and uw, -

u be vectors which span the space ( initially [ uij] is the nxn ideatity

matrix). Then:

94
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1. Fori=1, ..., n, compute Bitominimize f(xJ i-l* ’iui)‘

wherex_ . =x + . uandx
-1 i i

J,i T, i o”‘

J, J.

2. Fori=1l, ..., n-1, replace ni by “i 1

3. Replace u oy xJ,n- X,

4. Compute 8 to minimise f ( x; +#u ), definex . ixJ +fu ,
return to (1).
A simple graphical example will clarify the iteration procedure.
Consider an ellipse in two-dimension2] space (see Fig. 6.1). The
algorithm starts at ( x yo), and on the first iteration, the search

directions .0, are (1,0) and (0,1), which are along the x and y directions.

Yy

p

(x, +810,y,+6,0,)

¥ig. 6.1 Operation of Powell' s Method.
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Following Step 1, the algorithm searches along the ul(O)

(0)

direction, ind B is the resultant pnint along the W' - axis. Then,

the algorithm searches along the uzw) direction from the point (xo +‘lu1(o), yo),

and C is the resultant point. Steps 2 and 3 require the new ssarch

1 o
directions to be: ‘ﬁ( ) = uz‘ ) . uza) = (ﬁt “1(0)’ azuz(o)), where uza)

is actually the direction along AC. Finally, S:ep 4 implies that point

D is the value of the new estimate, i.e., x =x_ + ﬁuzu). The procedure
is then repeated, and for this example, convergence will be obtained

on the second iterate.

Q)

On the second iterate, the new direction D D* is conjugate to u,
according to a theorem developed by Powellzo. The minimum is obtained
by performirg an additional search along this direction.

This example demonstrates that the algorithm converges in a
finite number of iterates for quadratic functions. As one might expect,
the property of conjugacy plays an important role in this connection,
and more details will be presented in the next secticn.

‘This basic procedure has the defect,as pointed out by Zangwill 22_
that a poor guess of the initial position (e. g., voint B in Fig. 6.1) might

lead the algorithm to fail to find the minimum. Instead, the algorithm

(0}

2 , which defines a proper

will converge to a minimum along the line u
subspace of the space Rz.
sl s 20 22
In order to overcome this difficulty, both Powell  and Zangwill

proposed methods to retain the linear independence. Numerical

experiments in Ref. 25 show that Powell' s modification is preferable



to Zangwill' s.

6.2 The Roles of Coajugacy, Orthogonality and Independence

By definition, +wo vectors uy and “2 are said to he conjugate
with respect *o the positive definite syinmetric ratrix A if

ll‘r A u, = 0.
A set of conjugate directions is a set in which the vectors are pairwise
conjugate.

Consider a quadratic function f (x,y) = xz + Qyz. with ellipiical
con-ours as shown in Figure 6.2. Writing the fanction in matrix form,

fix,v)=[ x,y] 1l o x]

0 4\l vy 6.3)
with the A matr
1 0

A o 4 {6. 4)

and the two unit vectors along the x and y axes

RN

It is obvious that 9, and u_ are conjugate.

2
With Powell' s method one can obtain the minimum by searching

along each of the conjugate directions once as long as the space on which

the function is defined is spanned by the conjugate vectors. From Figure

6.2, one can easily see that the minimum is obtained by searching along

the x- and y- directions only once regardiess of the initial guessed position.

Now consider the same function in a coordinate system rotated 45°

from the original systemn:
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Figure 6.2 Case when initial search directions are
principal axes.

y -~y
| nz

f

| k )

B A Y

Figure 6.3. Convergence characteristics for nonconjugate and
and conjugate search directions.
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[ 5 -3] -,1
fix,y)=[x,y]] 2 2
3 5
L‘E 2 LY (6.6)

From Figure 6.3, successive searches along the x and y axes
will not reach *he minimum due to the fact that the x and y axes are
no longer conjugate. On the other hand, the minimum can always be
reached by successive searches along two conjugate directions. For
example, co~sider

- I _J3/5
b O [o %2711
These vectors are conjugate since
T |‘ 5 3113
Au, = = -=1l=
by Au=l10]13 AR E
5 1
2
and, as can be seen in Figure 6. 3, the minimum is reached by
3
successive searches along w = [1,0] and u, =ls . 1] .

Since the principal axes of « quadratic function are orthogonal
and also A-corjugate, one can always find the minimum by searching
along the principal axes once only. The algorithm modification by
Brent is essentially based on this concept, i.e., it is to find the
principal axes of the function f ( or its quadratic approximation) and

to search along the principal axes to obtain the minimum.

6.3 PRAXIS - A Modification of Powell's Method

Because of the deficiencies of Powell' 8 method, e.g.,
the loss of linear independcnce ana conjugacy, Brert 25 developed a

modified version called PRAXIS. The main modifications are:
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1) A restart device is included to reset the search directions to
a set of orthogonal, A-conjugate vectors after every n or n+ 1 iterations
to insure the linear independence of the new search directions. These
conjugate vectors are computed on the assurnption that f is quadratic
or is the quadratic approximation of the function to be minimized. If
f is quadratic or if the quadratic approximation is good, then the new
search directions are conjugate with respect to 2 matrix which is close
to the Hessian matrix of f at the minimum. This resetting method
will prevent the scheme from searching for a minimum in a subspace.

2) A random step is inserted to enable the scheme to search for
ancther initial point in each iteration if the most recent linear search
hae failed to improve the current approximati n to the minimum. With
this step in the scheme, the trouble noted by Zangwill will be avcided.

For example, in Figure 6.1 if point B is chosen as the initial
point, then Powell's basic procedure will find C as the minimum and
stop, as noted by Zangwill. Powell' s modified procedure will retaia
the old search vectors as the new search direction for the next iteration;
hence one more iteration is needed to reach the minimum.

With the random step, the algorithm will replace point B by an
arbitrary point in the space, say A' in Figure 6.1, after having failed
to ot 1in an improvement in the direction of w = (1, 0). This rules out
the possibility of linearly dependent search directions.

3) Discarding criterion. Powell' 8 modification proposed that
the search direction should be discarded and replaced by one which

maximizes | det (oo V) |, where
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T 2
Vi=(ui Aui) 2 ., l_(_i n (6.7)

[ Y

A: nxn matrix related to the quadratic approximation
This discarding method may lead to the elimination of one of the mutually
conjugate directions, in which case finite convergence for a quadratic
function can no longer be assured.
In PRAXIS the criterion described below is employed. It is
essentially Powell' s criterion except an additional restriction is imposed
to insure the firite convergence for a quadratic function property.
The discarding criterion for PRAXIS is as follows:

At Kth iteration with search direction ul’ e un and I det (V,, .., Vn)lo

(a) Fori=1,..., n-k#l, take u, out of “1’ cees W ka1 «nd compute

-1
= T 15
VJ_ =[ xn-xo) A(xn-xo)J 2 (xn-xo)
1
t = i=l,...,n-k+l.
(b) Compute ldet(Vl'..., Viv Vigrooor Vo Vp 1 =D islneki

(¢) Eno Di is larger than the value |det (Vl, Cen Vn) | o then no
replacement for the search direction occurs. Otherwise go
to (d).

(d) For Dm =Max (D,) and D_ > | det (V,,..., V) lo, renumber

ul =ul, .. .,um’1= um-l’ um =um+1. e e, un_1=u , and
u =X - X
n n (o]
Thus, at the K'2 iterati 1 of u is permitted
N e 1 era.tlon, ony one ul, o e ey n-k+l Pe 1tte

to be discarded.
4) The linear search in PRAXIS is similar to Powell s procedure.

It reduces the number of function evaluations considerably. For example,
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consider the linear search in the direction u, i.e., minimize

¥ ) =flx +Au ), (6.8)
At the first iteration three function evaluations are reeded for a
quadratic curve - fit, say p(A) =a\ 2 + b\ +c. The seond der-
ivativeof P (A), i.e., a, 15 saved because it can be used 1n the next
iteration when this search direction is utilized again.zo Then, the
approximation for the second derivative of p (\) is always available
if a linear search in the direction u has already been performed or
if u resulted from a singular value decomposition, which is the step
to find the principal axis vectors in PRAXIS. Thus, only two additional
function values are needed for the three constants a,b,c, wherea = ¢ "(0)
after the first iteration.

6.4 Exampies

Zermelo' s problem it used to demonstrate the efficiency and
reliability of the algorithm. Long's method 17 is used to sransform
this variable time problem into a fixed final time problem. The equations
of motion are

x = Vcos 0

y = Vgin 0

é =u, |u|<€0.5 (6.9)
and the performance index is

J

2
thz P (x (t) - xf)2 +P, (v (t) - yf)2 +P_ (8 (t) - 0;) (6.10)

Performing Long's transformation, i.e., t = as, se [0,1],
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dt = ads, = ats =1 ( V) o

x' =a Vcos @
y' =a V=sin 6
8' =au
a' =¢ (6.1t}
and
2 2 2 2
J=Ca +P [ xM-x 1 +p, [y =y, 1 +p, [ 6)-8]." (6.12)
To emplcy PRAXIS, the control u(s) must be discretized. Let u (8) =
w, s [ O.al); u(s)=uz, se IO 0 ERI u(s}:un, sef s .1 1} .

and consider the cost J to be minimized as a function of thea +1

variablesa, u, . ., a , i.e.,
1 n
J=37 a,u, uz, .., un] (6.13)

The pioblem was then attacked with PRAXIS for three different inttial

(M

£ The results are summarized in Table 6.1.

estimates for a, i, e., +



Table 6.1. Parameters and Resulis with PRAXIS.

Constants: C =1

Pl = PZ = 10000, P3 =0

n =10,

ui(o’=0.2, i=1,...,10

fu, ] £.5

= =85
xf 4.0, yf 5.0

Dptimal Control: u =.5for se [o0,.3]

c,=0.0forse {0 1]
0 0 ]
CASE a( )z tf( ) final a* Ix(l) y(1) |Figure
Y 1 "6.734 [€.71]2.99715.00106.4.a
2 4 6.730 16.71(3.999]4. 999'6.4.b
3 10 $.7408|6.71]3.999 4.999F. 4.c

The cost reduction versus number of linear searches for cases

1 and 3 are shown in Figure 6.5, while the various control profiles

(0)

are shown in Figure 6.4. In addition, the cost for t =40 i-

f

shown in Figure 6.5. This trial converged to a local rninimum and
no longer improved the cost. Note that the trials with tf(o)= 1 and
tf(o) =10 corverged to the neighborhood of the minimum cost rapidly.
However, the control profiles, in a sense, oscillate about the optimal

control. Of course, this behavior could be improved by assuming a

more representative parameterized concro ..



(0)

(a) tf =1 sec. 102
— - = - Initial puess

u
S r—— g final control

) o — exact solution

}——---——— ——————————

| 1.2 b . . 8 s

] ]

ﬁ

(b) tf(o)= 4 sec.
s
s

Figure 5.4. Control profiles using PRAXIS with various

initial estimates of tf.
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CHAPTER 7
CCNCLUSIONS AND RECOMMENDATIONS

7.1 Summary

Computer programs tcr shuttle trajectory optirmization have been
developed and delivered to NASA-JSC. Cne of the programs contains
the function-space gradieni. conjugate-gradient, Davidon, 2nd Broyden
algorithms for the ascent problem. The P1AXIS parameter optimization
scheme has been integraed into the NASA-JSC PEACE parameter
optimi.ation program.

7.2 Conclusions and Recommendations

1.) The function-space Broyden and Davidon methods perforrmed
appreciably better on the shuttle ascent problem than the gradient and
conjugate -gradient algorithms, with Broyden slightly better than
Davidor. Both control and state variable inequality cor<traints were
included in the formulation with the control constraints handled directly
while the stare variable constraints were included with penalty functions.

2.) The storage problems associated with function-space Da. 1on-
type technigues have be 1 overcome. Although considerable storage
is necessary for the corrputation of inner products, the storage need
not be in fast memory. On the University of Michigan computer the
storage problem is handled very easily by a disk file storage system.
The programs for use on the NASA-JSC computer require modifications

for drum storage.

107
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3.) The University of Michigan computer is a time-sharing system
with an interactive-graphics capability. This capability accelerates
considerably the time required to converge a large-scale optimiza.ion
prohlem. For example, standard operation with the NASA-JSC PEACE
parameter optimization program {when a large number of parameters
is involved) usually involves: making a sirgle computer run daily,
analysis of the result, adjustment of parameters (usually penalty
coefficients), and resubmission of the program. This means that the
analyst must stop-and-start on the same problem many times, and the
process is a somewhat incificient use of the analyst's time. Witha
tin.e-shared, interactive graphics capability, the analyst can stay with
the problem continuously for longer periods of time with the result
being: less tctal cornputer time, less total human effort, more physical
knowledge of the problem, and more rapid solution of the problem.
Thus, it is recommended that MPAD consider the use of interactive-
graphics terminals in the solution of iarge-scale trajectory optimization
and mission analysis problems.

4.) Previous investigators have noted difficulties in solwing
variable final-time trajectory optimization problems with accelerated-
gradient methods. In Chapter 5 heuristic ar~—ents and sin.ulations
(0, *

indicate that the initial estimate of te is critical, and te '« tJf improves

the convergence rate considerably.
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5.) Due to budget limitations, the PRAXIS algorithm could
not be simulated on realistic shuttle trajectory optimization probler.s.

The worth of this algorithm will be determined by NASA-JSC personnel.
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Appendix A

Dynamical Equations of Motion: First Stage

As is customary in trajectory optimization the vehicle is modeled
as a point mass. It is furths r assumed that the thrust, aerodynainic,
and gravitational forces act through the center of mass. By Newton's
Second Law,

Y F=mr, (A.1)

where r 1is measured in an inertial coordinate system. Since numerical

integration is desired in the first stage, consider Figure A.1l. The

acceleration of r is:
Z

Inertial

System p Rotating System

w

x

Figure A.1. Rotating Coordinate System Definitiors

r =

wi

te Xp +u X xp)+PROT +2w xp ROT (A.2)
Consider twc coordinate systems fixed at the center of the earth,
one of which rotates with the earth and the other inertial. Then,

i) R 0, since both coordinate systems are fixed at the same point.

constant == » = 0, since rototation of earth about its axis

ii) ©
is constant.

iii) T = p; follows fromr =R + p and i} R = 0.
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Thus the acceleration is
g oo -

r =1 +;x(t:x;)+2l::‘c-

(1.3
rot ¢ !

Rl

Now consider the:iwo sphe~-c coordinaie svsten.s .cenfered at the

center of the earth shown in Figure A.2. By definitio»

— —

- _ - - - .
r=re =Re e —e@r:h.
T R" 'r R :

(R,ﬂ s Q) (re l!‘)
Non-Rotating rotating aboeut 2 axis

Figure A.2. First-Stage Coordinate System.

Since R is along the z-axis,

 of
which implie - =
I A €a b N
Qxr=]2Cos -2 &ir it = r28in A e!
r n 0
2x (Ax 1) :F;‘r . -
Q Cos 6 -QSine 0
o 0 r Q Sin ©
2 .2 - 2 .. -
=-[ r2 Sin" 2]l e -] rQ Sino Cos 8] e
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e ee e‘
2erR0T=ZQCose -2QSin 0 0
r r @ r$Sin 0
-

= - Zrniasmze]?r-[ 2 rQ2¢Sin @ COse]Ee

+[ 2rQ0 Cos @ +2r QSin 0] §¢
yet E’=ThrustForce=Trzr+T e +T, e

) ¢ ¢
A = Aerodynamic Force = Are + A + A¢ e¢
= -m k -
G - Cravitational Force = -_-é__ er
r

Then, upon substitution into Eq. (A.1)

e . .z
r-rez—r§Sin20

r @ sin0 -2rQSin >0
1 k
“m ( T ta, -er ] (A.4)

ré +2 fe.-r‘szineCose
-r o’ Sino Cos 9 -2r 2Sin 8 Cos 0

1
_m[ T0+Ae]

(A.E)
rdSine +_.r¢Sin6 +2r0 ¢ Coso *
+2rQ0 Cos® +2r QSin 0
1
“ml Tethayl (A.6)
Define
r =v
Tr
9=ve
b=v
%
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m = mass flow rate (A.7)

F =A +T
r r r

F9=A9 +T9

F¢=A¢ +T¢

Since ¢ is an ignorable coordinate, the ¢ - equation is neglected. Then,

with the following state-control definitions

xl=r-R°, xz=6 » Xz =0, x4=ve, xs-vd,, x, =m, u = 1m'[
the equations of motion are:
(r) xl = x3
x
. 4
0 x = e——
2 2
x4 + x5 K ( RO)Q 2 si -
(u) =x_= s Hx, + in” x
3 - 1 2
(x1 + Ro) (x1+Ro)
Fr
+2 st Sin x, x,
x 2 X, X
. 5 3 4 4
(v) x, = - +(5*R)a” sin x, Cos x
4 (xR Jtanx, (x +R) 2 2
Fe
Q —
+2 xg Cos x, + x(., (A. 8)
*3 *g *4 %5

(W) 3.‘5 = -(XI+R°) -(’ﬁ +van xz- 2 Qx4 Cos Xz

F

-2 x.8Q28in x +-;¢
3 2 x6

(mass) i6= -u



where

x1 = altitude above earth

x, = ¢

Xy =V -velocity in e direction

x, =v_ - velocity in e _ direction
4™ Vo YR €

X, = Vg - velocity in ep direction

x, =mass of vehicle

u = [m| - mass flow rate
Ro = radius of earth

Q - angular velo ity of earth

k = gravitational constant of earth



Appendix B

Atmosphere and CD Modeis

—

The 1963 Patrick Atmnosphere model was used. Pressure and density
ratics, and speed of sound data were obtained from Ref. 26 and curve

fitted as functions of altitude according to the equations

13
p/pSL=exp(ao+alx+.... ta,x)
Pl .= exp (b +b x+ +b,. x 3

SL o 1 R 13
= 13
a -exp(c°+clx+.... +clax )
_ altitude (ft) - 200, 000
* =100, 000

The coefficients a,, bi' < are given in Ref. 27

The data in Table B.1 were used to define the drag model. The drag

force is given by

1
D =3P VZ CD A
For Mach numbers between those in the data table, interpolation by

piecewise cubic splines was used.

17
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Mach No. (M)

covooocouvoproJIUNNYN"OCxnouan

VYN WWNNEREERNROODO®O D

.028
.028
.028
. 029
.032
.058
.10

.121

123
.121

115

.106
. 088
. 066
. 055
. 047
.C39
.031
. 025
. 021
. 019
. 019

Table B.1 Drag Coeffizient



Appendix C

Transformation Equations

At the end of first-stage burn we wish to determine both the
inclination of the orbital plane and the initial conditions for the second-
stage, non-rotating polar coordinate system. The plane of the orbit is
determined at first-stage burnout because there is no out-of-plane

thrusting in the second-stage. Consider the conditions at first-sta

burnout:

e
r

r

I}
L |

Qxr = e e +v. € +rQSin9 e
ROT+er vrer+veea ¢ ¢ ¢

<l
"
<1

1_e1_+veee+(v4, +rQ2Sin 0) e¢ (C.1)

1}
<

~o
v

. ~
Consider the new polar system ( r, .

l @}

,Qr’e):

1

H -—

e
r

P\i
2°°1 o
@

H
-wacn

.2

cyo

i

Figure C.1. Second-Stage Polar Coordinate Sycstem.

since lvi = \/vrz + veZ +(v, +r2Sin6 )2 and the radial coraponents of

¢

the vel(. c1.y are the same in each system, the velocity transformation is

Y
V. v

r r
o ‘}’ 2 Q s 2! c.2
Vo Yo * (v¢ +r Q8Sin 6) (C.2)

Thus, in state notation

~ 2 , - 2’
SEINES t[xg v (x +R)ASInx,]" (C.3)



126

~ - ﬂ- I~ A ~ - . t - . i
where X=r Ro’ F, X, Ve Note that the mass will change by ihe
amount of structure discarded.

To obtain the inclination, consider the following unit ver r which

is perpendicular toethe pleane of the orbit:
- - - o %
N=rxV=|r 0 0

(v. +rQSin 0)

vr ve
=r Jeeq, - r(v(b +r$'2$m9)ee
— ~ ve ;
d

_X
NN

v, +(v, +rQSin 9)

0

$

(v +rQSino) _
- 3 o
v 9i— (v¢ + rQ2Sinf)
Let k 2 unit vector along the axis of rotation of the earth. Then,

E".Cosez -SinB:
r ;]

The relation between :N’ k , and the inclination, ®,is shown in Figure C.2.

K

Figure C.2.
Thus,
Cos 2

| h

-

L d

-

Crbit Inclination Geometry.

o
Z

=)

-

-

v.+rQ2Sin 6) Sin 0

ve +(v

+ r Q2Sin 0)

¢

-

,/’T"' = inclination angle



or in ~tate notation

. tXg + (x1+Ro ) @ Sin le Sin x, . (. 4
Cos * = 7 > =
1% + X QSi 2
ey [ xg + (xl + R:\ Sin xz] l
L 4
Denste the transformation equaticns (C. 3) bv
¥ = ¢ x). (C.5)

The partial derivatives of g with respect to the x, are defined by

L T

-it—l =1 rey =0 1=2,
1
i) x =g =x
2 2 3
] o
?:’g: 0 i=12,45% Y
i &y
Hiy)x, = 2 =lx£+|'x +( +R)s’2$inx]2‘
3°-%37 /% 5 "y 2

Let xsa(xl+Ro)QSinx2 = | )

2 2
ENN§ =
Thus
Ig -1
3 1 -

—— T — Q i
o) > ! 12 2¢ } QSin x,
383 1 . ._1_

=5 | ] 2 2¢( )(xl +R°) Cos x

3%, 2
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Appendix D

User s Guide for PRAXIS

FRAXIS determines the local minimum of a scalar function

which need not be differentiable. Double precision is necessary for

all floating point variables. An EXTERNAL statement for the function

*o = be minimized is needed in tho program which calls PRAXIS.

However, the gradiernt uf the function is not required.

Usage of PRAXIS

CALL PRAXIS (TO,HO, N, IPRIN. X, F, FMIN)

Description of parameters:

F:

MACHUP:

TO:

HO:

IPRIN:

Function to be minimized
A machire precision parameter furnished in the
program; it is about 2.22 x 10“16 on the IBM 369.
A tolerence for the stopping criterion; the program
stops searching for the minimum if

i+l

't MacHUP || x

Il x -x I + TO
Maximum step-size. To assure fast convergence,

HO should be about the maximum distance from 'he

initial guess to the minimum.

The number of dependent variables, i.e., the dirnension of
x /N should not be less than two).

An integer for controlling the printing of numerical

results.

123
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IPRIN = 0. Nothing is printed by PRAXIS.

IPRIN = 1. Value of F is printed after every N +lor N 2
linear minimizations. Final x is printed. If
N < 4, irtermediate x is printed also

IPRIN = 2. The scale factors and the principal values of the
approximating guadratic form are also printed.

IPRIN = 3. The values of x aiter everv few linear minimizztions
are printed also.

IPRIN - 4. All avaiiable and relevent values are printed.

X : An N dimensional vector. Initial guess of minimum

is placed here to start the program. Final estimate

of X is returned to here.

-

F(X,N): A REAIL * 8 function to minimized. A declared

EXTERNAL is necessary in the calling program.

FMIN - The final value of F obtained.

Qutput vo riables.

LMIN: Number cf linear mirimizations,

EVALS: Number of function evaluaticns.

MIN F: Function value at LMIN th linear minization

Example of use

IMPLICIT REAL * 8 (A-H, g -Z)

DIMENSION X (2)

EXTERNAL BANANA

IO =1.D-5
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N=2

X(1) =1.2 DO

X (2)=1.DO

HO =2.0

IPRIN =1

CALL PRAXIS (TO,HO, N, IPRIN, X, BANANA, FMIN)

PRINT FMIN

FORMAT ('FMIN =', D 25.15)

END -

. Fnuction to be minimized . . . . . . . . . .. .. 0oL
REAL FUNCTION BANANA (X,N)

IMPLICIT REAL * 8 (A-H, ¢ -Z)

DIMENSION X (N)

BANANA =100. DO * (X (2) - X (1) **2) **fé + (1.D90- X(1% ) *=2
. NOTE, THERE ARE NO DERIVATIVES OF BANANA . . . . . .
RETURN

END
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K=o, xX"=x, , x,:mn-vector

Random step define a new initial point for

ill - conditioned problem ,ie., xX-x,eyu

ﬂ[

For £=t,e,m, Compate g to m;"f(z{‘”‘.) and

Je{iut x‘-‘:.x".fﬁﬂ.-u-. 1f any F:=o0 90 %o @__J

L

Define Z =X7- X" Campate B to wninf(xF+eB2).
pafine XEUoxZeP2, w=(2AZ) EZ

<@ et

Define \/: =(¢l‘!4u")-tu‘-, compute B,=[det(%,,Va)}

For 1£( % a-kef, replace v; i« order by w,

Cm"f‘ Ai: ,def(v,,'",V,;.,.N.Vs'cu“‘,\lu)|

Store any 8; >4, , compare |
and peek the l»’(’f 4, the

Cnfcs,’ﬂ‘inj n’l&eqeorf will pe
the mew searmh direction for the

| mex+ femation

FinJ the principal vecters of A (maltrix of
guadratic apprexr:mation)

-‘Def""z a:[}ll'..lgn]' 3" are Fr?ncipal
vectors

Set U= Q
K=0

Figure D.1. Flow Diagram of PRAXIS.
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